Citation: Xin Zhao, Lei Huang, Hongrui Li, Hang Hu, Jin Han, Liyi Shi, Dengsong Zhang. Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1886-1899. doi: 10.1016/S1872-2067(15)60958-5 shu

Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3

  • Corresponding author: Lei Huang,  Liyi Shi,  Dengsong Zhang, 
  • Received Date: 18 June 2015
    Available Online: 25 July 2015

    Fund Project: 国家自然科学基金(21303099) (21303099) 国家重点基础研究发展计划(973计划, 2014CB660803) (973计划, 2014CB660803) 上海市教委项目(14ZZ097, B.3704713001) (14ZZ097, B.3704713001) 上海大学创新基金(K.10040713003). (K.10040713003)

  • Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ℃. The results of X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.
  • 加载中
    1. [1]

      [1] Zhang L, Shi L Y, Huang L, Zhang J P, Gao R H, Zhang D S. ACS Catal, 2014, 4: 1753

    2. [2]

      [2] Kamolphop U, Taylor S F R, Breen J P, Burch R, Delgado J J, Chansai S, Hardacre C, Hengrasmee S, James S L. ACS Catal, 2011, 1: 1257

    3. [3]

      [3] Deka U, Lezcano-Gonzalez I, Weckhuysen B M, Beale A M. ACS Catal, 2013, 3: 413

    4. [4]

      [4] Maitarad P, Zhang D S, Gao R H, Shi L Y, Li H R, Huang L, Rungrotmongkol T, Zhang J P. J Phys Chem C, 2013, 117: 9999

    5. [5]

      [5] Chen L, Li J H, Ge M F. J Phys Chem C, 2009, 113: 21177

    6. [6]

      [6] Ettireddy P R, Ettireddy N, Boningari T, Pardemann R, Smirniotis P G. J Catal, 2012, 292: 53

    7. [7]

      [7] Phil H H, Reddy M P, Kumar P A, Ju L K, Hyo J S. Appl Catal B, 2008, 78: 301

    8. [8]

      [8] Bai S L, Zhao J H, Wang L, Zhu Z P. Catal Today, 2010, 158: 393

    9. [9]

      [9] Kompio P G W A, Brückner A, Hipler F, Auer G, Löffler E, Grünert W. J Catal, 2012, 286: 237

    10. [10]

      [10] Putluru S S R, Schill L, Gardini D, Mossin S, Wagner J B, Jensen A D, Fehrmann R. J Mater Sci, 2014, 49: 2705

    11. [11]

      [11] Camposeco R, Castillo S, Mugica V, Mejía-Centeno I, Marín J. Chem Eng J, 2014, 242: 313

    12. [12]

      [12] Koh H L, Park H K. J Ind Eng Chem, 2013, 19: 73

    13. [13]

      [13] Centeno M A, Malet P, Carrizosa I, Odriozola J A. J Phys Chem B, 2000, 104: 3310

    14. [14]

      [14] Lietti L, Nova I, Forzatti P. Top Catal, 2000, 11-12: 111

    15. [15]

      [15] Lietti L, Nova I, Ramis G, Dall'Acqua L, Busca G, Giamello E, Forzatti P, Bregani F. J Catal, 1999, 187: 419

    16. [16]

      [16] Du X S, Gao X, Fu Y C, Gao F, Luo Z Y, Cen K F. J Colloid Interface Sci, 2012, 368: 406

    17. [17]

      [17] Li Q, Yang H S, Nie A M, Fan X Y, Zhang X B. Catal Lett, 2011, 141: 1237

    18. [18]

      [18] Putluru S S R, Riisager A, Fehrmann R. Catal Lett, 2009, 133: 370

    19. [19]

      [19] Gao R H, Zhang D S, Liu X G, Shi L Y, Maitarad P, Li H R, Zhang J P, Cao W G. Catal Sci Technol, 2013, 3: 191

    20. [20]

      [20] Lee K J, Kumar P A, Maqbool M S, Rao K N, Song K H, Ha H P. Appl Catal B, 2013, 142-143: 705

    21. [21]

      [21] Lee K J, Maqbool M S, Kumar P A, Song K H, Ha H P. Catal Lett, 2013, 143: 988

    22. [22]

      [22] Ettireddy P R, Ettireddy N, Mamedov S, Boolchand P, Smirniotis P G. Appl Catal B, 2007, 76: 123

    23. [23]

      [23] Vargas M A L, Casanova M, Trovarelli A, Busca G. Appl Catal B, 2007, 75: 303

    24. [24]

      [24] Boningari T, Koirala R, Smirniotis P G. Appl Catal B, 2012, 127: 255

    25. [25]

      [25] Sagar A, Trovarelli A, Casanova M, Schermanz K. SAE Int J Engines, 2011, 4: 1839

    26. [26]

      [26] Yang S J, Wang C Z, Ma L, Peng Y, Qu Z, Yan N Q, Chen J H, Chang H Z, Li J H. Catal Sci Technol, 2013, 3: 161

    27. [27]

      [27] Liu Z M, Li Y, Zhu T L, Su H, Zhu J Z. Ind Eng Chem Res, 2014, 53: 12964

    28. [28]

      [28] Huang L, Shi L Y, Zhao X, Xu J, Li H R, Zhang J P, Zhang D S. CrystEngComm, 2014, 16: 5128

    29. [29]

      [29] Liu F D, He H, Lian Z H, Shan W P, Xie L J, Asakura K, Yang W W, Deng H. J Catal, 2013, 307: 340

    30. [30]

      [30] Casanova M, Schermanz K, Llorca J, Trovarelli A. Catal Today, 2012, 184: 227

    31. [31]

      [31] Park E, Kim M, Jung H, Chin S, Jurng J. ACS Catal, 2013, 3: 1518

    32. [32]

      [32] Zhang J, Xu Q, Li M J, Feng Z C, Li C. J Phys Chem C, 2009, 113: 1698

    33. [33]

      [33] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem Int Ed, 2008, 47: 1766

    34. [34]

      [34] Gao X T, Jehng J M, Wachs I E. J Catal, 2002, 209: 43

    35. [35]

      [35] Giakoumelou I, Fountzoula C, Kordulis C, Boghosian S. J Catal, 2006, 239: 1

    36. [36]

      [36] Besselmann S, Löffler E, Muhler M. J Mol Catal A, 2000, 162: 401

    37. [37]

      [37] Huang L, Zhao X, Zhang L, Shi L Y, Zhang J P, Zhang D S. Nanoscale, 2015, 7: 2743

    38. [38]

      [38] Li K R, Wang Y J, Wang S R, Zhu B L, Zhang S M, Huang W P, Wu S H. J Nat Gas Chem, 2009, 18: 449

    39. [39]

      [39] Huo C L, Ouyang J, Yang H M. Sci Rep, 2014, 4: 3682

    40. [40]

      [40] Zhao W, Zhong Q, Pan Y X, Zhang R. Chem Eng J, 2013, 228: 815

    41. [41]

      [41] Zhao Y B, Qin Z F, Wang G F, Dong M, Huang L C, Wu Z W, Fan W B, Wang J G. Fuel, 2013, 104: 22

    42. [42]

      [42] Chen S, Chu W, Liu X, Tong D G. J Nat Gas Chem, 2011, 20: 553

    43. [43]

      [43] Liu F D, He H, Zhang C B, Feng Z C, Zheng L R, Xie Y N, Hu T D. Appl Catal B, 2010, 96: 408

    44. [44]

      [44] Trawczyński J, Bielak B, Miśta W. Appl Catal B, 2005, 55: 277

    45. [45]

      [45] Zheng J, Chu W, Zhang H, Jiang C F, Dai X Y. J Nat Gas Chem, 2010, 19: 583

    46. [46]

      [46] Li C M, Zhou J Y, Gao W, Zhao J W, Liu J, Zhao Y F, Wei M, Evans D G, Duan X. J Mater Chem A, 2013, 1: 5370

    47. [47]

      [47] Palacio L A, Silva J M, Ribeiro F R, Ribeiro M F. Catal Today, 2008, 133-135: 502

    48. [48]

      [48] Nguyen L D, Loridant S, Launay H, Pigamo A, Dubois J L, Millet J M M. J Catal, 2006, 237: 38

    49. [49]

      [49] Chary K V R, Kumar C P, Rajiah T, Srikanth C S. J Mol Catal A, 2006, 258: 313

    50. [50]

      [50] Palacio L A, Silva E R, Catalão R, Silva J M, Hoyos D A, Ribeiro F R, Ribeiro M F. J Hazard Mater, 2008, 153: 628

    51. [51]

      [51] Casanova M, Schermanz K, Llorca J, Trovarelli A. Catal Today, 2012, 184: 227

    52. [52]

      [52] Cai S X, Zhang D S, Zhang L, Huang L, Li H R, Gao R H, Shi L Y, Zhang J P. Catal Sci Technol, 2014, 4: 93

    53. [53]

      [53] Fang C, Zhang D S, Shi L Y, Gao R H, Li H R, Ye L P, Zhang J P. Catal Sci Technol, 2013, 3: 803

    54. [54]

      [54] Zhang D S, Zhang L, Shi L Y, Fang C, Li H R, Gao R H, Huang L, Zhang J P. Nanoscale, 2013, 5: 1127

    55. [55]

      [55] Zhang L, Zhang D S, Zhang J P, Ca i S X, Fang C, Huang L, Li H R, Gao R H, Shi L Y. Nanoscale, 2013, 5: 9821

    56. [56]

      [56] Fang C, Zhang D S, Cai S X, Zhang L, Huang L, Li H R, Maitarad P, Shi L Y, Gao R H, Zhang J P. Nanoscale, 2013, 5: 9199

    57. [57]

      [57] Shan W P, Liu F D, He H, Shi X Y, Zhang C B. Catal Today, 2012, 184: 160

    58. [58]

      [58] Shan W P, Liu F D, He H, Shi X Y, Zhang C B. Appl Catal B, 2012, 115-116: 100

    59. [59]

      [59] Tronconi E, Nova I, Ciardelli C, Chatterjee D, Weibel M. J Catal, 2007, 245: 1

    60. [60]

      [60] Koebel M, Madia G, Raimondi F, Wokaun A. J Catal, 2002, 209: 159

    61. [61]

      [61] Schwidder M, Heikens S, De Toni A, Geisler S, Berndt M, Brückner A, Grünert W. J Catal, 2008, 259: 96

    62. [62]

      [62] Shi X Y, Liu F D, Xie L J, Shan W P, He H. Environ Sci Technol, 2013, 47: 3293

    63. [63]

      [63] Liu F D, Asakura K, He H, Liu Y C, Shan W P, Shi X Y, Zhang C B. Catal Today, 2011, 164: 520

    64. [64]

      [64] Long R Q, Yang R T. J Catal, 2002, 207: 158

    65. [65]

      [65] Cheng L S, Yang R T, Chen N. J Catal, 1996, 164: 70

    66. [66]

      [66] Liu F D, He H. J Phys Chem C, 2010, 114: 16929

    67. [67]

      [67] Chmielarz L, Dziembaj R, Grzybek T, Klinik J, Łojewski T, Olszewska D, Węgrzyn A. Catal Lett, 2000, 70: 51

    68. [68]

      [68] Wu Z B, Jiang B Q, Liu Y, Wang H Q, Jin R B. Environ Sci Technol, 2007, 41: 5812

    69. [69]

      [69] Chen L, Li J H, Ge M F. Environ Sci Technol, 2010, 44: 9590

    70. [70]

      [70] Peng Y, Wang C Z, Li J H. Appl Catal B, 2014, 144: 538

    71. [71]

      [71] Zhu J, Gao F, Dong L H, Yu W J, Qi L, Wang Z, Dong L, Chen Y. Appl Catal B, 2010, 95: 144

    72. [72]

      [72] Gu T T, Jin R B, Liu Y, Liu H F, Weng X L, Wu Z B. Appl Catal B, 2013, 129: 30

    73. [73]

      [73] Liu F D, He H, Ding Y, Zhang C B. Appl Catal B, 2009, 93: 194

    74. [74]

      [74] Larrubia M A, Ramis G, Busca G. Appl Catal B, 2001, 30: 101

    75. [75]

      [75] Qi G, Yang R T, Chang R. Appl Catal B, 2004, 51: 93

    76. [76]

      [76] Long R Q, Yang R T. J Catal, 2002, 207: 224

    77. [77]

      [77] Zhou G Y, Zhong B C, Wang W H, Guan X J, Huang B C, Ye D Q, Wu H J. Catal Today, 2011, 175: 157

    78. [78]

      [78] Foo R, Vazhnova T, Lukyanov D B, Millington P, Collier J, Rajaram R, Golunski S. Appl Catal B, 2015, 162: 174

    79. [79]

      [79] Burkardt A, Weisweiler W, van den Tillaart J A A, Schäfer- Sindlinger A, Lox E S. Top Catal, 2001, 16-17: 369

    80. [80]

      [80] Si Z C, Weng D, Wu X D, Li J, Li G. J Catal, 2010, 271: 43

    81. [81]

      [81] Zhang Q L, Song Z X, Ning P, Liu X, Li H, Gu J J. Catal Commun, 2015, 59: 170

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    7. [7]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    8. [8]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    14. [14]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    15. [15]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    18. [18]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

Metrics
  • PDF Downloads(0)
  • Abstract views(800)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return