Citation: Nanli Qiao, Yang Li, Na Li, Xin Zhang, Jie Cheng, Zhengping Hao. High performance Pd catalysts supported on bimodal mesopore silica for the catalytic oxidation of toluene[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1686-1693. doi: 10.1016/S1872-2067(15)60924-X shu

High performance Pd catalysts supported on bimodal mesopore silica for the catalytic oxidation of toluene

  • Corresponding author: Jie Cheng, 
  • Received Date: 16 March 2015
    Available Online: 11 June 2015

    Fund Project: 国家自然科学基金(21337003, 21477149) (21337003, 21477149) 中国科学院战略性先导科技专项(XDB05050200). (XDB05050200)

  • A series of bimodal mesoporous silica (BMS-x)-supported Pd catalysts were successfully prepared by a facile sol-gel approach, followed by an impregnation method. The synthesized catalysts were characterized by several analytical techniques and the oxidation of toluene was used to evaluate their catalytic performance. Textural analysis showed that all samples had high surface areas (~1000 m2/g), large pore volumes (~1.2 cm3/g) and uniform mesopore size (~2.6 nm). Defining the level of ammonia solution to within a certain range resulted in the catalysts possessing a typical bimodal mesoporous structure with an intraparticle framework mesopore and an interparticle textural mesopore (18-40 nm). Transmission electron microscopy observations and CO chemisorption results revealed that this unique bimodal mesoporous structure helped to decrease the particle size of Pd nanoparticles and could further enhance their dispersion. Activity tests revealed the Pd/BMS-5-Pd/BMS-20 catalysts with a bimodal mesopore structure possessed superior catalytic performance for the oxidation of toluene compared to Pd/BMS-30 with a unimodal mesopore structure. More importantly, compared with the Pd/MCM-41 and Pd/MCM-48 catalysts, Pd/BMS-15 had improved hydrothermal stability and catalytic performance at a high gas hourly space velocity of 70000 h-1. These results indicate the potential application of the catalysts for the elimination of volatile organic compounds.
  • 加载中
    1. [1]

      [1] Taylor M N, Zhou W, Garcia T, Solsona B, Carley A F, Kiely C J, Taylor S H. J Catal, 2012, 285: 103

    2. [2]

      [2] Zhu Z Z, Lu G Z, Zhang Z G, Guo Y, Guo Y L, Wang Y Q. ACS Catal, 2013, 3: 1154

    3. [3]

      [3] Wu Y S, Zhang Y X, Liu M, Ma Z C. Catal Today, 2010, 153: 170

    4. [4]

      [4] Li J J, Xu X Y, Jiang Z, Hao Z P, Hu C. Environ Sci Technol, 2004, 39: 1319

    5. [5]

      [5] Wang F, Dai H X, Deng J G, Bai G M, Ji K M, Liu Y X. Environ Sci Technol, 2012, 46: 4034

    6. [6]

      [6] Zhan W C, Guo Y, Gong X Q, Guo Y L, Wang Y Q, Lu G Z. Chin J Catal (詹望成, 郭耘, 龚学庆, 郭杨龙, 王艳芹, 卢冠忠. 催化学报), 2014, 35: 1238

    7. [7]

      [7] Garcia T, Solsona B, Murphy D M, Antcliff K L, Taylor S H. J Catal, 2005, 229: 1

    8. [8]

      [8] Garcia T, Solsona B, Cazorla-Amorós D, Linares-Solano Á, Taylor S H. Appl Catal B, 2006, 62: 66

    9. [9]

      [9] He C, Zhang X Y, Cao S K, Chen J S, Hao Z P. J Ind Eng Chem, 2012, 18: 1598

    10. [10]

      [10] Li W B, Zhuang M, Xiao T C, Green M L H. J Phys Chem B, 2006, 110: 21568

    11. [11]

      [11] He C, Li J J, Cheng J, Li L D, Li P, Hao Z P, Xu Z P. Ind Eng Chem Res, 2009, 48: 6930

    12. [12]

      [12] He C, Li J J, Li P, Cheng J, Hao Z P, Xu Z P. Appl Catal B, 2010, 96: 466

    13. [13]

      [13] Fechete I, Ersen O, Garin F, Lazar L, Rach A. Catal Sci Technol, 2013, 3: 444

    14. [14]

      [14] Oh C G, Baek Y, Ihm S K. Adv Mater, 2005, 17: 270

    15. [15]

      [15] Dhainaut J, Dacquin J P, Lee L A, Wilson K. Green Chem, 2010, 12: 296

    16. [16]

      [16] Holland B T, Abrams L, Stein A. J Am Chem Soc, 1999, 121: 4308

    17. [17]

      [17] Zhang Y, Yoneyama Y, Tsubaki N. Chem Commun, 2002: 1216

    18. [18]

      [18] Liu X M, Xue H X, Li X, Yan Z F. Catal Today, 2010, 158: 446

    19. [19]

      [19] Li X, Han D Z, Xu Y Q, Liu X M, Yan Z F. Mater Lett, 2011, 65: 1765

    20. [20]

      [20] Gheorghiu S, Coppens M O. AIChE J, 2004, 50: 812

    21. [21]

      [21] Sato S, Takahashi R, Sodesawa T, Koubata M. Appl Catal A, 2005, 284: 247

    22. [22]

      [22] Takahashi R, Sato S, Sodesawa T, Arai K, Yabuki M. J Catal, 2005, 229: 24

    23. [23]

      [23] Zhang X J, Hirota R, Kubota T, Yoneyama Y, Tsubaki N. Catal Commun, 2011, 13: 44

    24. [24]

      [24] Chen X F, Wang X C, Fu X Z. Energy Environ Sci, 2009, 2: 872

    25. [25]

      [25] Kamperman M, Burns A, Weissgraeber R, Vegten N V, Warren S C, Gruner S M, Baiker A, Wiesner U. Nano Lett, 2009, 9: 2756

    26. [26]

      [26] Lu S H, Liu Y, Wang Y Q. Chem Commun, 2010, 46: 634

    27. [27]

      [27] Wang X Z, Dou T, Xiao Y Z. Chem Commun, 1998, 1035

    28. [28]

      [28] Wang X Z, Li W H, Zhu G S, Qiu S L, Zhao D Y, Zhong B. Microporous Mesoporous Mater, 2004, 71: 87

    29. [29]

      [29] Zhang B J, Davis S A, Mann S. Chem Mater, 2002, 14: 1369

    30. [30]

      [30] Yun J S, Ihm S K. J Phys Chem Solids, 2008, 69: 1133

    31. [31]

      [31] Parlett C M A, Keshwalla P, Wainwright S G, Bruce D W, Hondow N S, Wilson K, Lee A F. ACS Catal, 2013, 3: 2122

    32. [32]

      [32] Parlett C M A, Bruce D W, Hondow N S, Newton M A, Lee A. F, Wilson K. ChemCatChem, 2013, 5: 939

    33. [33]

      [33] Avinoam N, Leonid P M. Chem Eng Sci, 1977, 32: 35

    34. [34]

      [34] Ikari K, Suzuki K, Imai H. Langmuir, 2004, 20: 11504

    35. [35]

      [35] Leitão A, Rodrigues A. Chem Eng J Biochem Eng J, 1995, 60: 111

    36. [36]

      [36] Wang F, Li J S, Yuan J F, Sun X Y, Shen J Y, Han W Q, Wang L J. Catal Commun, 2011, 12:1415

  • 加载中
    1. [1]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    2. [2]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    9. [9]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    12. [12]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    13. [13]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    20. [20]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

Metrics
  • PDF Downloads(0)
  • Abstract views(430)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return