Citation: Tingting Lu, Pan Gao, Jun Xu, Yongrui Wang, Wenfu Yan, Jihong Yu, Feng Deng, Xuhong Mu, Ruren Xu. Influence of Al3+ on polymorph A enrichment in the crystallization of beta zeolite[J]. Chinese Journal of Catalysis, ;2015, 36(6): 889-896. doi: 10.1016/S1872-2067(14)60300-4 shu

Influence of Al3+ on polymorph A enrichment in the crystallization of beta zeolite

  • Corresponding author: Wenfu Yan, 
  • Received Date: 25 December 2014
    Available Online: 26 January 2015

    Fund Project: 国家自然科学基金(21171063) (21171063) 优秀青年科学基金(21222103) (21222103) 国家重点基础研究发展计划(2011CB808703) (2011CB808703) 石油化工催化材料与反应工程国家重点实验室(中国石化石油化工科学研究院)开放课题基金 (中国石化石油化工科学研究院) 长江学者和创新团队发展计划(IRT101713018). (IRT101713018)

  • Using tetraethylammonium hydroxide as the organic structure-directing agent and in the presence of fluoride, polymorph A-enriched silica beta zeolite was synthesized under concentrated hydrothermal conditions. The introduction of Al species into the same starting mixture resulted in a decrease in the degree of enrichment of polymorph A in beta zeolite and an Al-incorporated beta zeolite resulted. The crystallized polymorph A-enriched silica beta zeolite and the Al-incorporated beta zeolite and their crystallization processes were investigated by X-ray diffractometry, elemental analysis, thermogravimetric analysis-differential thermal analysis, nitrogen adsorption, scanning electron microscopy, and solid-state magic angle spinning nuclear magnetic resonance. The introduction of Al species accelerated crystallization and reduced the crystal size of Al-incorporated beta zeolite. The intermediate of five-coordinated Al species accounted for a decrease in the degree of enrichment of polymorph A in the crystallization of Al-incorporated beta zeolite.
  • 加载中
    1. [1]

      [1] Wadlinger R L, Kerr G T, Rosinski E J. US Patent 3 308 069. 1967

    2. [2]

      [2] Newsam J M, Treacy M M J, Koetsier W T, De Gruyter C B. Proc R Soc Lond A, 1988, 420: 375

    3. [3]

      [3] Higgins J B, LaPierre R B, Schlenker J L, Rohrman A C, Wood J D, Kerr G T, Rohrbaugh W J. Zeolites, 1988, 8: 446

    4. [4]

      [4] Davis M E, Lobo R F. Chem Mater, 1992, 4: 756

    5. [5]

      [5] Camblor M A, Corma A, Valencia S. Chem Commun, 1996: 2365

    6. [6]

      [6] Xia Q H, Shen S C, Song J, Kawi S, Hidajat K. J Catal, 2003, 219: 74

    7. [7]

      [7] Takagi Y, Komatsu T, Kitabata Y. Microporous Mesoporous Mater, 2008, 109: 567

    8. [8]

      [8] Taborda F, Willhammar T, Wang Z Y, Montes C, Zou X D. Microporous Mesoporous Mater, 2011, 143: 196

    9. [9]

      [9] Tong M Q, Yan W F, Yu J H, Xu R R. Chem J Chin Univ (童明全, 闫文付, 于吉红, 徐如人. 高等学校化学学报), 2013, 34: 494

    10. [10]

      [10] Guo W, Yan W F, Xu R R, Wang Y R, Mu X H. Chem J Chin Univ (郭文, 闫文付, 徐如人, 王永睿, 慕旭宏. 高等学校化学学报), 2014, 35: 1363

    11. [11]

      [11] Camblor M A, Corma A, Martinez A, Perez-Pariente J. J Chem Soc, Chem Commun, 1992: 589

    12. [12]

      [12] Corma A, Nemeth L T, Renz M, Valencia S. Nature, 2001, 412: 423

    13. [13]

      [13] Jin J J, Ye X X, Li Y S, Wang Y Q, Li L, Gu J L, Zhao W R, Shi J L. Dalton Trans, 2014, 43: 8196

    14. [14]

      [14] Li Y J, Armor J N. Chem Commun, 1997: 2013

    15. [15]

      [15] Santi D, Holl T, Calemma V, Weitkamp J. Appl Catal A, 2013, 455: 46

    16. [16]

      [16] Zhu Y Z, Chuah G, Jaenicke S. J Catal, 2004, 227: 1

    17. [17]

      [17] Hazm J E, Caullet P, Paillaud J L, Soulard M, Delmotte L. Microporous Mesoporous Mater, 2001, 43: 11

    18. [18]

      [18] Bourgeat-Lami E, Di Renzo F, Fajula F, Mutin P H, Des Courieres T. J Phys Chem, 1992, 96: 3807

    19. [19]

      [19] Camblor M A, Corma A, Valencia S. Microporous Mesoporous Mater, 1998, 25: 59

    20. [20]

      [20] Serrano D P, Van Grieken R, Sanchez P, Sanz R, Rodriguez L. Microporous Mesoporous Mater, 2001, 46: 35

    21. [21]

      [21] Camblor M A, Corma A, Valencia S. J Mater Chem, 1998, 8: 2137

    22. [22]

      [22] Hartmeyer G, Marichal C, Lebeau B, Caullet P, Hernandez J. J Phys Chem C, 2007, 111: 6634

    23. [23]

      [23] Harris R K, Newman R H. J Chem Soc, Faraday Trans 2, 1977, 73: 1204

  • 加载中
    1. [1]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    7. [7]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    14. [14]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    19. [19]

      Yumiao Gao Yixin Chen Jiaxin Wei Junjie Yu Yunxia Wang . Guarding the Kingdom: Skin Allies with Sunscreen for Mutual Protection. University Chemistry, 2024, 39(9): 74-80. doi: 10.12461/PKU.DXHX202404149

    20. [20]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

Metrics
  • PDF Downloads(0)
  • Abstract views(529)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return