Citation: Giuseppe Bellussi, Angela Carati, Stefania Guidetti, Caterina Rizzo, Roberto Millini, Stefano Zanardi, Erica Montanari, Wallace O'Neil Parker Jr., Michela Bellettato. Synthesis and characterization of Si/Ga Eni Carbon Silicates[J]. Chinese Journal of Catalysis, ;2015, 36(6): 813-819. doi: 10.1016/S1872-2067(14)60296-5 shu

Synthesis and characterization of Si/Ga Eni Carbon Silicates

  • Corresponding author: Michela Bellettato, 
  • Received Date: 4 November 2014
    Available Online: 14 January 2015

  • Phenylene-gallosilicates were prepared with the same crystalline structure as their aluminum analogues. The new Ga-Eni Carbon Silicates (Ga-ECS) phases were investigated by X-ray diffraction, scanning electron microscopy, nuclear magnetic resonance and thermogravimetric analysis, which demonstrated that gallium isomorphously replaced aluminum in the framework of the organic-inorganic hybrids similar to the case of classical zeolites. Hybrid ECS materials were obtained with different types of bridged silsesquioxane precursors that maintained the aluminum-silicate nature of the inorganic moiety. This work confirms a new level of crystal chemistry versatility for this class of materials, and demonstrates the possibility to tailor also the inorganic part of the framework by changing the nature of the trivalent heteroatom.
  • 加载中
    1. [1]

      [1] Čejka J, Centi G, Perez-Pariente J, Roth W J. Catal Today, 2012, 179: 2

    2. [2]

      [2] Bellussi G, Carati A, Rizzo C, Millini R. Catal Sci Technol, 2013, 3: 833

    3. [3]

      [3] Díaz U, Brunel D, Corma A. Chem Soc Rev, 2013, 42: 4083

    4. [4]

      [4] Sánchez C, Ribot F. New J Chem, 1994, 18: 1007

    5. [5]

      [5] Stein A, Melde B J, Schroder R C. Adv Mater, 2000, 12: 1403

    6. [6]

      [6] Eddaoudi M, Moler D B, Li H, Chen B, Reineke T M, O'Keeffe M, Yaghi O M. Acc Chem Res, 2001, 34: 319

    7. [7]

      [7] Wight A P, Davis M E. Chem Rev, 2002, 102: 3589

    8. [8]

      [8] Hoffmann F, Cornelius M, Morel J, Fröba M. Angew Chem Int Ed, 2006, 45: 3216

    9. [9]

      [9] Hoffmann F, Fröba M. Chem Soc Rev, 2011, 40: 608

    10. [10]

      [10] Corma A, Iglesias M, del Pino C, Sanchez F. J Chem Soc, Chem Commun, 1991: 1253

    11. [11]

      [11] Cauvel A, Brunel D, Di Renzo F, Moreau P, Fajula F. Stud Surf Sci Catal, 1994, 94: 286

    12. [12]

      [12] Jones C W, Tsuji K, Davis M E. Nature, 1998, 393: 52

    13. [13]

      [13] Tsuji K, Jones C W, Davis M E. Microporous Mesoporous Mater, 1999, 29: 339

    14. [14]

      [14] Jones C W, Tsuji K, Davis M E. Microporous Mesoporous Mater, 1999, 33: 223

    15. [15]

      [15] Jones C W, Tsuji K, Davis M E. Microporous Mesoporous Mater, 2001 42: 21

    16. [16]

      [16] Roth W J, Nachtigall P, Morris R E, Čejka J. Chem Rev, 2014, 144: 4807

    17. [17]

      [17] Corma A, Diaz U, Garcia T, Sastre G, Velty A. J Am Chem Soc, 2010, 132: 15011

    18. [18]

      [18] Opanasenko M, Parker W O Jr, Shamzhy M, Montanari E, Bellettato M, Mazur M, Millini R, Čejka J. J Am Chem Soc, 2014, 136: 2511

    19. [19]

      [19] Yamamoto K, Sakata Y, Nohara Y, Takahashi Y, Tatsumi T. Science, 2003, 300: 470

    20. [20]

      [20] Yamamoto K, Nohara Y, Domon Y, Takahashi Y, Sakata Y, Plévert J, Tatsumi T. Chem Mater, 2005, 17: 3913

    21. [21]

      [21] Yamamoto K, Tatsumi T. Chem Mater, 2008, 20: 972

    22. [22]

      [22] Díaz U, Vidal-Moya J A, Corma A. Microporous Mesoporous Mater, 2006, 93: 180

    23. [23]

      [23] Su B L, Roussel M, Vause K, Yang X Y, Gilles F, Shi L, Leonova E, Edén M, Zou X. Microporous Mesoporous Mater, 2007, 105: 49

    24. [24]

      [24] Zhou D, Lu X, Xu J, Yu A, Li J, Deng F, Xia Q. Chem Mater, 2012, 24: 4160

    25. [25]

      [25] Bellussi G, Carati A, Di Paola E, Millini R, Parker W O Jr, Rizzo C, Zanardi S. Microporous Mesoporous Mater, 2008, 113: 252

    26. [26]

      [26] Bellussi G, Montanari E, Di Paola E, Millini R, Carati A, Rizzo C, Parker W O Jr, Gemmi M, Mugnaioli E, Kolb U, Zanardi S. Angew Chem Int Ed, 2012, 51: 666

    27. [27]

      [27] Bellettato M, Bonoldi L, Cruciani G, Flego C, Guidetti S, Millini R, Montanari E, Parker W O Jr, Zanardi S. J Phys Chem C, 2014, 118: 7458

    28. [28]

      [28] Millini R, Perego G, Bellussi G. Top Catal, 1999, 9: 13

    29. [29]

      [29] Bellussi G, Millini R, Montanari E, Carati A, Rizzo C, Parker W O Jr, Cruciani G, de Angelis A, Bonoldi L, Zanardi S. Chem Commun, 2012, 48: 7356

    30. [30]

      [30] Zanardi S, Bellussi G, Parker W O Jr, Montanari E, Bellettato M, Cruciani G, Carati A, Guidetti S, Rizzo C, Millini R. Dalton Trans, 2014, 43: 10617

    31. [31]

      [31] Macario A, Aloise A, Giordano G, Nagy J. 7th Int Symp on Acid-Base Catalysis, Tokyo (J), May 12-15, 2013

    32. [32]

      [32] Goldsmith J R. Mineral Mag, J Miner Soc, 1952, 29: 952

    33. [33]

      [33] Newsam J M, Vaughan D E W. Stud Surf Sci Catal, 1986, 28: 457

    34. [34]

      [34] Weitkamp J, Puppe L. Catalysis and Zeolites: Fundamentals and Applications, 1999. 228

    35. [35]

      [35] Fricke R, Kosslick H, Lischke G, Richter M. Chem Rev, 2000, 100: 2303

    36. [36]

      [36] Larson A C, Von Dreele R B, Los Alamos National Laboratory Report LAUR, 1994, 86: 748

    37. [37]

      [37] Toby B H. J Appl Crystallogr, 2001, 34: 210

    38. [38]

      [38] Bendall M R, Pegg D T. Magn Reson Med, 1985, 2(2): 91

    39. [39]

      [39] Thomas J M, Klinowski J, Ramdas S, Hunter B K, Tennakoon D T B. Chem Phys Lett, 1983, 102: 158

    40. [40]

      [40] Zanardi S, Parker W O Jr, Carati A, Botti G, Montanari E. Microporous Mesoporous Mater, 2013, 172: 200

    41. [41]

      [41] Baur W H. J Solid State Chem, 1992, 97: 243

    42. [42]

      [42] Cruciani G. J Phys Chem Solids, 2006, 67: 1973

  • 加载中
    1. [1]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    2. [2]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    3. [3]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    4. [4]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    5. [5]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    6. [6]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    7. [7]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    8. [8]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    9. [9]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    10. [10]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    11. [11]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    12. [12]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    13. [13]

      Xia LiYandie LiuZhenglin DuQiangsheng ZhangQing ChenJialin XieKelong Zhu . Bowl-in-bowl encapsulation of corannulene by herteroatom-bridged nanobelts. Chinese Chemical Letters, 2025, 36(5): 110249-. doi: 10.1016/j.cclet.2024.110249

    14. [14]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    15. [15]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    16. [16]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    17. [17]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    18. [18]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    19. [19]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    20. [20]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

Metrics
  • PDF Downloads(0)
  • Abstract views(632)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return