Citation: Yasong Wang, Yunpeng Xu, Dawei Li, Hao Liu, Xiaolei Li, Shuo Tao, Zhijian Tian. Ionothermal synthesis of zeolitic imidazolate frameworks and the synthesis dissolution-crystallization mechanism[J]. Chinese Journal of Catalysis, ;2015, 36(6): 855-865. doi: 10.1016/S1872-2067(14)60278-3 shu

Ionothermal synthesis of zeolitic imidazolate frameworks and the synthesis dissolution-crystallization mechanism

  • Corresponding author: Zhijian Tian, 
  • Received Date: 14 November 2014
    Available Online: 14 December 2014

    Fund Project: 国家自然科学基金(21001102, 21373214). (21001102, 21373214)

  • A cooling-induced crystallization process was used to synthesize sod (RCSR symbol)- and zni (RCSR symbol)-type zeolitic imidazolate frameworks (ZIFs) ionothermally in 1-ethyl-3-methylimidazolium bromide ionic liquid and a urea-choline chloride deep eutectic solvent. The products were characterized by X-ray diffraction, scanning electron microscopy, nuclear magnetic resonance spectroscopy, infrared spectroscopy and thermal gravimetric analysis. The effect of the synthesis conditions on the crystallinity, size and morphology of the product was studied. The dissolution-crystallization mechanism of ZIFs was discussed. The cooling rate affected the product morphology. When the synthesis solution was cooled by rapid cooling, the shape of the sod-type product was spherical and the morphology of the zni-type product was rod-like or plate-like. With a programmed cooling, the sod-type product was polyhedron in shape and the zni-type product was in the form of clusters.
  • 加载中
    1. [1]

      [1] Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O'Keeffe M, Yaghi O M. Acc Chem Res, 2010, 43: 58

    2. [2]

      [2] Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, Yaghi O M. Chem Soc Rev, 2009, 38: 1257

    3. [3]

      [3] Chizallet C, Lazare S, Bazer-Bachi D, Bonnier F, Lecocq V, Soyer E, Quoineaud A A, Bats N. J Am Chem Soc, 2010, 132: 12365

    4. [4]

      [4] Jiang H L, Akita T, Ishida T, Haruta M, Xu Q. J Am Chem Soc, 2011, 133: 1304

    5. [5]

      [5] Farrusseng D, Aguado S, Pinel C. Angew Chem Int Ed, 2009, 48: 7502

    6. [6]

      [6] Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proc Natl Acad Sci USA, 2006, 103: 10186

    7. [7]

      [7] Perez-Pellitero J, Amrouche H, Siperstein F R, Pirngruber G, Nieto-Draghi C, Chaplais G, Simon-Masseron A, Bazer-Bachi D, Peralta D, Bats N. Chem Eur J, 2010, 16: 1560

    8. [8]

      [8] Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. J Am Chem Soc, 2009, 131: 11302

    9. [9]

      [9] Venna S R, Carreon M A. J Am Chem Soc, 2010, 132: 76

    10. [10]

      [10] Bennett T D, Tan J H, Moggach S A, Galvelis R, Mellot-Draznieks C, Reisner B A, Thirumurugan A, Allan D R, Cheetham A K. Chem Eur J, 2010, 16: 10684

    11. [11]

      [11] Tan J C, Bennett T D, Cheetham A K. Proc Natl Acad Sci USA, 2010, 107: 9938

    12. [12]

      [12] Tian Y Q, Cai C X, Ren X M, Duan C Y, Xu Y, Gao S, You X Z. Chem Eur J, 2003, 9: 5673

    13. [13]

      [13] Hikov T, Schroder C A, Cravillon J, Wiebckeb M, Huber K. Phys Chem Chem Phys, 2012, 14: 511

    14. [14]

      [14] Huang X C, Lin Y Y, Zhang J P, Chen X M. Angew Chem Int Ed, 2006, 45: 1557

    15. [15]

      [15] Pan Y C, Liu Y Y, Zeng G F, Zhao L, Lai Z P. Chem Commun, 2011, 47: 2071

    16. [16]

      [16] Gross A F, Sherman E, Vajo J J. Dalton Trans, 2012, 41: 5458

    17. [17]

      [17] Venna S R, Jasinski J B, Carreon M A. J Am Chem Soc, 2010, 132: 18030

    18. [18]

      [18] Cravillon J, Schoder C A, Nayuk R, Gummel J, Huber K, Wiebcke M. Angew Chem Int Ed, 2011, 50: 8067

    19. [19]

      [19] Seoane B, Zamaro J M, Tellez C, Coronas J. CrystEngComm, 2012, 14: 3103

    20. [20]

      [20] Cho H Y, Kim J, Kim S N, Ahn W S. Microporous Mesoporous Mater, 2013, 169: 180

    21. [21]

      [21] Yang L S, Lu H M. Chin J Chem, 2012, 30: 1040

    22. [22]

      [22] Beldon P J, Fabian L, Stein R S, Thirumurugan A, Cheetham A K, Friscic T. Angew Chem Int Ed, 2010, 49: 9640

    23. [23]

      [23] Shi Q, Chen Z F, Song Z W, Li J P, Dong J X. Angew Chem Int Ed, 2011, 50: 672

    24. [24]

      [24] Zhang H, Shi Q, Kang X Z, Dong J X. J Coord Chem, 2013, 66: 2079

    25. [25]

      [25] Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi O M. Science, 2008, 319: 939

    26. [26]

      [26] Lehnert R, Seel F Z. Anorg Allg Chem, 1980, 464: 187

    27. [27]

      [27] Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Nature, 2004, 430: 1012

    28. [28]

      [28] Wang Y S, Xu Y P, Tian Z J, Lin L W. Chin J Catal (王亚松, 徐云鹏, 田志坚, 林励吾. 催化学报), 2012, 33: 39

    29. [29]

      [29] Dybtsev D N, Chun H, Kim K. Chem Commun, 2004:1594

    30. [30]

      [30] Zhang J, Wu T, Chen S M, Feng P Y, Bu X H. Angew Chem Int Ed, 2009, 48: 3486

    31. [31]

      [31] Chen S M, Zhang J, Wu T, Feng P Y, Bu X H. Dalton Trans, 2010, 39: 697

    32. [32]

      [32] Wang Y S, Xu Y P, Ma H J, Xu R S, Liu H, Li D W, Tian Z J. Microporous Mesoporous Mater, 2014, 195: 50

    33. [33]

      [33] Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem Commun, 2003: 70

    34. [34]

      [34] Zhang Q H, De Oliveira V, Royer S, Jerome F. Chem Soc Rev, 2012, 41: 7108

    35. [35]

      [35] Cravillon J, Munzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M. Chem Mater, 2009, 21: 1410

    36. [36]

      [36] Griffiths H. J Soc Chem Ind, 1925, 44: 7

    37. [37]

      [37] Sarig S, Glasner A, Epstein J A, Eidelman N. J Cryst Growth, 1977, 39: 255

    38. [38]

      [38] Xu R R, Pang W Q, Yu J H, Huo Q S, Chen J S. Chemistry—Zeolites and Porous Materials. Beijing: Science Press (徐如人, 庞文琴, 于吉红, 霍启升, 陈接胜. 分子筛与多孔材料化学. 北京: 科学出版社), 2004. 379

    39. [39]

      [39] Krivankova I, Marcisinova M, Sohnel O. J Chem Eng Data, 1992, 37: 23

    40. [40]

      [40] Mullin J W. Crystallization. 3rd Ed. London: Butterworth Heinemann, 1993. 20

    41. [41]

      [41] Jones A G, Mullin J W. Chem Eng Sci, 1974, 29: 105

    42. [42]

      [42] Dirksen J A, Ring T A. Chem Eng Sci, 1991, 46: 2389

  • 加载中
    1. [1]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    2. [2]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    3. [3]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    4. [4]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Ling Li Guocheng Wang . 知识图谱与AI助教在无机化学混合式教学中的初步探索——以“沉淀溶解平衡”的教学为例. University Chemistry, 2025, 40(6): 1-8. doi: 10.12461/PKU.DXHX202407063

    7. [7]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    8. [8]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    9. [9]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    18. [18]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

Metrics
  • PDF Downloads(0)
  • Abstract views(402)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return