Citation:
Lin Ge, Chengjie Zang, Feng Chen. The enhanced Fenton-like catalytic performance of PdO/CeO2 for the degradation of acid orange 7 and salicylic acid[J]. Chinese Journal of Catalysis,
;2015, 36(3): 314-321.
doi:
10.1016/S1872-2067(14)60261-8
-
A PdO/CeO2 catalyst was prepared by deposition-precipitation method and characterized with X-ray diffraction, high-resolution transmission electron microscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy and Raman spectroscopy. The results show that the Pd is presented as Pd2+ in the catalyst. The interaction between the deposited PdO and CeO2 increases the Ce3+ content. The catalytic activity of PdO/CeO2 was tested in the heterogeneous Fenton-like degradation of acid orange 7 (AO7) and salicylic acid (SA), both in the dark and under visible irradiation. Deposition of PdO accelerates the Fen-ton-like degradation of SA, which reaches a maximum at 1.0 atom% PdO loading. A dye sensitization effect was seen with AO7 under visible irradiation. Dye sensitization promotes the regeneration of Ce3+ by interfacial peroxides species through interfacial electron injection. Consequently, the combined effects of PdO loading and visible light irradiating enhanced the Fenton-like activity to a reaction rate constant of 3.90 h-1 for the 1.0 PdO/CeO2, a ca. 50-fold improvement.
-
Keywords:
- Fenton-like reaction,
- Ceria,
- Palladium oxide,
- Degradation,
- Hydrogen peroxide
-
-
-
[1]
[1] Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G. Catal Today, 1999, 50: 353
-
[2]
[2] Sun C W, Li H, Chen L Q. Energy Environ Sci, 2012, 5: 8475
-
[3]
[3] Besson M, Descorme C, Bernardi M, Gallezot P, di Gregorio F, Grosjean N, Pham Minh D, Pintar A. Environ Technol, 2010, 31: 1441
-
[4]
[4] Singh P, Hegde M S. Chem Mater, 2009, 21: 3337
-
[5]
[5] Nolan M. J Phys Chem C, 2011, 115: 6671
-
[6]
[6] Tanaka A, Hashimoto K, Kominami H. J Am Chem Soc, 2012, 134: 14526
-
[7]
[7] Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M. Chem Mater, 2010, 22: 6183
-
[8]
[8] Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. J Am Chem Soc, 2012, 134: 10251
-
[9]
[9] Gnanamani M K, Jacobs G, Shafer W D, Ribeiro M C, Pendyala V R R, Ma W P, Davis B H. Catal Commun, 2012, 25: 12
-
[10]
[10] Guzman J, Carrettin S, Corma A. J Am Chem Soc, 2005, 127: 3286
-
[11]
[11] Zhou H P, Wu H S, Shen J, Yin A X, Sun L D, Yan C H. J Am Chem Soc, 2010, 132: 4998
-
[12]
[12] Wieder N L, Cargnello M, Bakhmutsky K, Montini T, Fornasiero P, Gorte R J. J Phys Chem C, 2011, 115: 915
-
[13]
[13] Shen W J, Ichihashi Y, Okumura M, Matsumura Y. Catal Lett, 2000, 64: 23
-
[14]
[14] Meng L, Jia A P, Lu J Q, Luo L F, Huang W X, Luo M F. J Phys Chem C, 2011, 115: 19789
-
[15]
[15] Colussi S, Gayen A, Camellone F M, Boaro M, Llorca J, Fabris S, Trovarelli A. Angew Chem Int Ed, 2009, 48: 8481
-
[16]
[16] Heckert E G, Seal S, Self W T. Environ Sci Technol, 2008, 42: 5014
-
[17]
[17] Ji P F, Tian B Z, Chen F, Zhang J L. Environ Technol, 2012, 33: 467
-
[18]
[18] Cai W D, Chen F, Shen X X, Chen L J, Zhang J L. Appl Catal B, 2010, 101: 160
-
[19]
[19] Chen F, Shen X X, Wang Y C, Zhang J L. Appl Catal B, 2012, 121: 223
-
[20]
[20] Wang Y C, Shen X X, Chen F. J Mol Catal A, 2014, 381: 38
-
[21]
[21] Ji P F, Zhang J L, Chen F, Anpo M. Appl Catal B, 2009, 85: 148
-
[22]
[22] Chen F, Shen X X. Appl Catal B, 2011, 105: 252
-
[23]
[23] Ge L, Chen T, Liu Z Q, Chen F. Catal Today, 2014, 224: 209
-
[24]
[24] Xiao L H, Sun K P, Xu X L, Li X N. Catal Commun, 2005, 6: 796
-
[25]
[25] Carrettin S, Concepción P, Corma A, López Nieto J M, Puntes V F. Angew Chem Int Ed, 2004, 43: 2538
-
[26]
[26] Lee Y, He G, Akey A J, Si R, Flytzani-Stephanopoulos M, Herman I P. J Am Chem Soc, 2011, 133: 12952
-
[27]
[27] McBride J R, Hass K C, Poindexter B D, Weber W H. J Appl Phys, 1994, 76: 2435
-
[28]
[28] Orge C A, Órfâo J J M, Pereira M F R, Duarte de Farias A M, Neto R C R, Fraga M A. Appl Catal B, 2011, 103: 190
-
[29]
[29] Pushkarev V V, Kovalchuk V I, d'Itri J L. J Phys Chem B, 2004, 108: 5341
-
[30]
[30] Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G. Surf Interf Anal, 2008, 40: 264
-
[31]
[31] Holgado J P, Alvarez R, Munuera G. Appl Surf Sci, 2000, 161: 301
-
[32]
[32] Tsunekawa S, Fukuda T, Kasuya A. Appl Surf Sci, 2000, 457: L437
-
[33]
[33] Korsvik C, Patil S, Seal S, Self W T. Chem Commun, 2007: 1056
-
[34]
[34] Watanabe S, Ma X, Song C. J Phys Chem C, 2009, 113: 14249
-
[35]
[35] Ji P F, Wang L Z, Chen F, Zhang J L. ChemCatChem, 2010, 2: 1552
-
[1]
-
-
-
[1]
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
-
[2]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[3]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[6]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[7]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[8]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[9]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[10]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[11]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[12]
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
-
[13]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[14]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[15]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[16]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[17]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[18]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[19]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[20]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[1]
Metrics
- PDF Downloads(205)
- Abstract views(971)
- HTML views(89)