Citation: Lin Ge, Chengjie Zang, Feng Chen. The enhanced Fenton-like catalytic performance of PdO/CeO2 for the degradation of acid orange 7 and salicylic acid[J]. Chinese Journal of Catalysis, ;2015, 36(3): 314-321. doi: 10.1016/S1872-2067(14)60261-8 shu

The enhanced Fenton-like catalytic performance of PdO/CeO2 for the degradation of acid orange 7 and salicylic acid

  • Received Date: 21 October 2014
    Available Online: 1 December 2014

    Fund Project: 国家自然科学基金(21177039) (21177039) 上海市教委科研创新项目(13ZZ042). (13ZZ042)

  • A PdO/CeO2 catalyst was prepared by deposition-precipitation method and characterized with X-ray diffraction, high-resolution transmission electron microscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy and Raman spectroscopy. The results show that the Pd is presented as Pd2+ in the catalyst. The interaction between the deposited PdO and CeO2 increases the Ce3+ content. The catalytic activity of PdO/CeO2 was tested in the heterogeneous Fenton-like degradation of acid orange 7 (AO7) and salicylic acid (SA), both in the dark and under visible irradiation. Deposition of PdO accelerates the Fen-ton-like degradation of SA, which reaches a maximum at 1.0 atom% PdO loading. A dye sensitization effect was seen with AO7 under visible irradiation. Dye sensitization promotes the regeneration of Ce3+ by interfacial peroxides species through interfacial electron injection. Consequently, the combined effects of PdO loading and visible light irradiating enhanced the Fenton-like activity to a reaction rate constant of 3.90 h-1 for the 1.0 PdO/CeO2, a ca. 50-fold improvement.
  • 加载中
    1. [1]

      [1] Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G. Catal Today, 1999, 50: 353

    2. [2]

      [2] Sun C W, Li H, Chen L Q. Energy Environ Sci, 2012, 5: 8475

    3. [3]

      [3] Besson M, Descorme C, Bernardi M, Gallezot P, di Gregorio F, Grosjean N, Pham Minh D, Pintar A. Environ Technol, 2010, 31: 1441

    4. [4]

      [4] Singh P, Hegde M S. Chem Mater, 2009, 21: 3337

    5. [5]

      [5] Nolan M. J Phys Chem C, 2011, 115: 6671

    6. [6]

      [6] Tanaka A, Hashimoto K, Kominami H. J Am Chem Soc, 2012, 134: 14526

    7. [7]

      [7] Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M. Chem Mater, 2010, 22: 6183

    8. [8]

      [8] Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. J Am Chem Soc, 2012, 134: 10251

    9. [9]

      [9] Gnanamani M K, Jacobs G, Shafer W D, Ribeiro M C, Pendyala V R R, Ma W P, Davis B H. Catal Commun, 2012, 25: 12

    10. [10]

      [10] Guzman J, Carrettin S, Corma A. J Am Chem Soc, 2005, 127: 3286

    11. [11]

      [11] Zhou H P, Wu H S, Shen J, Yin A X, Sun L D, Yan C H. J Am Chem Soc, 2010, 132: 4998

    12. [12]

      [12] Wieder N L, Cargnello M, Bakhmutsky K, Montini T, Fornasiero P, Gorte R J. J Phys Chem C, 2011, 115: 915

    13. [13]

      [13] Shen W J, Ichihashi Y, Okumura M, Matsumura Y. Catal Lett, 2000, 64: 23

    14. [14]

      [14] Meng L, Jia A P, Lu J Q, Luo L F, Huang W X, Luo M F. J Phys Chem C, 2011, 115: 19789

    15. [15]

      [15] Colussi S, Gayen A, Camellone F M, Boaro M, Llorca J, Fabris S, Trovarelli A. Angew Chem Int Ed, 2009, 48: 8481

    16. [16]

      [16] Heckert E G, Seal S, Self W T. Environ Sci Technol, 2008, 42: 5014

    17. [17]

      [17] Ji P F, Tian B Z, Chen F, Zhang J L. Environ Technol, 2012, 33: 467

    18. [18]

      [18] Cai W D, Chen F, Shen X X, Chen L J, Zhang J L. Appl Catal B, 2010, 101: 160

    19. [19]

      [19] Chen F, Shen X X, Wang Y C, Zhang J L. Appl Catal B, 2012, 121: 223

    20. [20]

      [20] Wang Y C, Shen X X, Chen F. J Mol Catal A, 2014, 381: 38

    21. [21]

      [21] Ji P F, Zhang J L, Chen F, Anpo M. Appl Catal B, 2009, 85: 148

    22. [22]

      [22] Chen F, Shen X X. Appl Catal B, 2011, 105: 252

    23. [23]

      [23] Ge L, Chen T, Liu Z Q, Chen F. Catal Today, 2014, 224: 209

    24. [24]

      [24] Xiao L H, Sun K P, Xu X L, Li X N. Catal Commun, 2005, 6: 796

    25. [25]

      [25] Carrettin S, Concepción P, Corma A, López Nieto J M, Puntes V F. Angew Chem Int Ed, 2004, 43: 2538

    26. [26]

      [26] Lee Y, He G, Akey A J, Si R, Flytzani-Stephanopoulos M, Herman I P. J Am Chem Soc, 2011, 133: 12952

    27. [27]

      [27] McBride J R, Hass K C, Poindexter B D, Weber W H. J Appl Phys, 1994, 76: 2435

    28. [28]

      [28] Orge C A, Órfâo J J M, Pereira M F R, Duarte de Farias A M, Neto R C R, Fraga M A. Appl Catal B, 2011, 103: 190

    29. [29]

      [29] Pushkarev V V, Kovalchuk V I, d'Itri J L. J Phys Chem B, 2004, 108: 5341

    30. [30]

      [30] Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G. Surf Interf Anal, 2008, 40: 264

    31. [31]

      [31] Holgado J P, Alvarez R, Munuera G. Appl Surf Sci, 2000, 161: 301

    32. [32]

      [32] Tsunekawa S, Fukuda T, Kasuya A. Appl Surf Sci, 2000, 457: L437

    33. [33]

      [33] Korsvik C, Patil S, Seal S, Self W T. Chem Commun, 2007: 1056

    34. [34]

      [34] Watanabe S, Ma X, Song C. J Phys Chem C, 2009, 113: 14249

    35. [35]

      [35] Ji P F, Wang L Z, Chen F, Zhang J L. ChemCatChem, 2010, 2: 1552

  • 加载中
    1. [1]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    8. [8]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    17. [17]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    18. [18]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    20. [20]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

Metrics
  • PDF Downloads(205)
  • Abstract views(972)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return