Citation: Yanli Cui, Xiaoning Guo, Yingyong Wang, Xiangyun Guo. Carbonylative Suzuki coupling reactions of aryl iodides with arylboronic acids over Pd/SiC[J]. Chinese Journal of Catalysis, ;2015, 36(3): 322-327. doi: 10.1016/S1872-2067(14)60258-8 shu

Carbonylative Suzuki coupling reactions of aryl iodides with arylboronic acids over Pd/SiC

  • Corresponding author: Xiaoning Guo, 
  • Received Date: 14 September 2014
    Available Online: 28 November 2014

    Fund Project: 国家自然科学基金(21203233) (21203233) 山西省自然科学基金(2013021007-1). (2013021007-1)

  • High surface area SiC has been used to prepare a Pd/SiC catalyst using the liquid reduction method, and the resulting catalyst was used for the carbonylative Suzuki coupling reaction of aryl iodides with arylboronic acids. The catalyst was also characterized by X-ray diffraction, inductively coupled plasma-mass spectroscopy and high-resolution transmission electron microscopy. The results of these analyses showed that homogeneous Pd nanoparticles with a mean diameter of 2.8 nm were uniformly dispersed on the SiC surface. Optimization of the reaction conditions for the carbonylative Suzuki coupling reaction, including the solvent, base, pressure, temperature and reaction time, revealed that the model reaction of iodobenzene (1.0 mmol) with phenylboronic acid (1.5 mmol) could reach 90% conversion with a selectivity of 99% towards the diphenyl ketone using 3 wt% Pd/SiC under 1.0 MPa of CO pressure at 100 ℃ for 8 h with K2CO3 (3.0 mmol) as the base and anisole as the solvent. The Pd/SiC catalyst exhibited broad substrate scope towards the carbonylative Suzuki coupling reaction of aryl iodides with arylboronic acids bearing a variety of different substituents. Furthermore, the Pd/SiC catalyst exhibited good recyclability properties and could be recovered and reused up to five times with the conversion of iodobenzene decreasing only slightly from 90% to 76%. The decrease in the catalytic activity after five rounds was attributed to the loss of active Pd during the organic reaction.
  • 加载中
    1. [1]

      [1] Wang X J, Zhang L, Sun X F, Xu Y B, Krishnamurthy D, Senanayake C H. Org Lett, 2005, 7: 5593

    2. [2]

      [2] Hatano B, Kadokaw J, Tagaya H. Tetrahedron Lett, 2002, 43: 5859

    3. [3]

      [3] Gmouh S, Yang H L, Vaultier M. Org Lett, 2003, 5: 2219

    4. [4]

      [4] Yamamoto T, Kohara T, Yamamoto A. Chem Lett, 1976, 11: 1217

    5. [5]

      [5] Hatanaka Y, Fukushima S, Hiyama T. Tetrahedron, 1992, 48: 2113

    6. [6]

      [6] Brunet J J, Chauvin R. Chem Soc Rev, 1995, 24: 89

    7. [7]

      [7] Fillion E, Fishlock D, Wilsily A, Goll J M. J Org Chem, 2005, 70: 1316

    8. [8]

      [8] Jang D O, Moon K S, Cho D H, Kim J G. Tetrahedron Lett, 2006, 47: 6063

    9. [9]

      [9] Ishiyama T, Kizaki H, Miyaura N, Suzuki A. Tetrahedron Lett, 1993, 34: 7595

    10. [10]

      [10] Ishiyama T, Kizaki H, Hayashi T, Suzuki A, Miyaura N. J Org Chem, 1998, 63: 4726

    11. [11]

      [11] Khedkar M V, Sasaki T, Bhanage B M. RSC Adv, 2013, 3: 7791

    12. [12]

      [12] Niu J R, Liu M M, Wang P, Long Y, Xie M, Li R, Ma J T. New J Chem, 2014, 38: 1471

    13. [13]

      [13] Zhan Y Y, Cai G H, Zheng Y, Shen X N, Zheng Y, Wei K M. Acta Phys- Chim Sin (詹瑛瑛, 蔡国辉, 郑勇, 沈小女, 郑瑛, 魏可镁. 物理化学学报), 2008, 24: 171

    14. [14]

      [14] Li X Y, Wang F G, Pan X L, Bao X H. Chin J Catal (李星运, 王发根, 潘秀莲, 包信和. 催化学报), 2013, 34: 257

    15. [15]

      [15] Liu H T, Li S Q, Zhang S B, Wang J M, Zhou G J, Chen L, Wang X L. Catal Commun, 2008, 9: 51

    16. [16]

      [16] Wang Y W, Guo X N, Dong L L, Jin G Q, Wang Y Y, Guo X Y. Int J Hydrogen Energy, 2013, 38: 12733

    17. [17]

      [17] Zhang G Q, Peng J X, Sun T J, Wang S D. Chin J Catal (张国权, 彭家喜, 孙天军, 王树东. 催化学报), 2013, 34: 1745

    18. [18]

      [18] Li H L, Lei Y G, Huang Y, Fang Y P, Xu Y H, Zhu L, Li X. J Nat Gas Chem, 2011, 20: 145

    19. [19]

      [19] Jiao Z F, Guo X N, Zhai Z Y, Jin G Q, Wang X M, Guo X Y. Catal Sci Technol, 2014, 4: 2494

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    10. [10]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    14. [14]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    19. [19]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(199)
  • Abstract views(728)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return