Citation: Juanjuan Chen, Chang Wang, Bin Dong, Wenguang Leng, Jun Huang, Rile Ge, Yanan Gao. Ionic liquids as eco-friendly catalysts for converting glycerol and urea into high value-added glycerol carbonate[J]. Chinese Journal of Catalysis, ;2015, 36(3): 336-343. doi: 10.1016/S1872-2067(14)60257-6 shu

Ionic liquids as eco-friendly catalysts for converting glycerol and urea into high value-added glycerol carbonate

  • Corresponding author: Yanan Gao, 
  • Received Date: 16 October 2014
    Available Online: 19 November 2014

    Fund Project: 国家自然科学基金(21273235, 21303076) (21273235, 21303076)

  • Acidic, basic and neutral ionic liquids (ILs) have been used as catalysts in the carbonylation of glycerol with urea. The results show that neutral ILs have high catalytic activity in the reaction. The excellent performance of the catalysts can be attributed to the synergistic effect of the cation and anion. We speculated that the cation with positive charge activates urea, and the anion with negative charge activates glycerol. In addition, the well balanced acid-basic properties of the catalysts are necessary for good catalytic performance. The ILs can be reused at least five times without loss of activity. Using ILs, instead of the traditional metal catalysts, reduces the use of non-renewable resources. It is eco-friendly that two inexpensive and bio-based raw materials were used and the catalytic reaction was carried out without solvent.
  • 加载中
    1. [1]

      [1] Ma F R, Hanna M A. Bioresour Technol, 1999, 70: 1

    2. [2]

      [2] Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Green Chem, 2008, 10: 13

    3. [3]

      [3] Zhou C H, Beltramini J N, Fan Y X, Lu G Q. Chem Soc Rev, 2008, 37: 527

    4. [4]

      [4] Sonnati M O, Amigoni S, de Givenchy E P T, Darmanin T, Choulet O, Guittard F. Green Chem, 2013, 15: 283

    5. [5]

      [5] Hu J L, Li J J, Gu Y L, Guan Z H, Mo W L, Ni Y M, Li T, Li G X. Appl Catal A, 2010, 386: 188

    6. [6]

      [6] Lim Y N, Lee C, Jang H Y. Eur J Org Chem, 2014: 1823

    7. [7]

      [7] Strain F. US Patent 2 446 145. 1948

    8. [8]

      [8] Patel Y, George J, Pillai S M, Munshi P. Green Chem, 2009, 11: 1056

    9. [9]

      [9] Kim S C, Kim Y H, Lee H, Yoon D Y, Song B K. J Mol Catal B,2007, 49: 75

    10. [10]

      [10] Climent M J, Corma A, Frutos P D, Iborra S, Noy M, Velty A, Concepción P. J Catal, 2010, 269: 140

    11. [11]

      [11] Wang L G, Ma Y B, Wang Y, Liu S M, Deng Y Q. Catal Commun, 2011, 12: 1458

    12. [12]

      [12] Turney T W, Patti A, Gates W, Shaheen U, Kulasegaram S. Green Chem, 2013, 15: 1925

    13. [13]

      [13] Rahim M H A, He Q, Lopez-Sanchez J A, Hammond C, Dimitratos N, Sankar M, Carley A F, Kiely C J, Knight D W, Hutchings G J. Catal Sci Technol, 2012, 2: 1914

    14. [14]

      [14] Jagadeeswaraiah K, Kumar C R, Prasad P S S, Loridant S, Lingaiah N. Appl Catal A,2014, 469: 165

    15. [15]

      [15] Fujita S I, Yamanishi Y, Arai M. J Catal, 2013, 297: 137

    16. [16]

      [16] Sandesh S, Shanbhag G V, Halgeri A B. RSC Adv, 2014, 4: 974

    17. [17]

      [17] Claude S, Mouloungui Z, Yoo J W, Gaset A. US Patent 6 025 504. 2000

    18. [18]

      [18] Lee M S, Baek J H. US Patent 2 013 026 771 5A1. 2013

    19. [19]

      [19] Buzzeo M C, Evans R G, Compton R G. ChemPhysChem, 2004, 5: 1106

    20. [20]

      [20] Macfarlane D R, Forsyth M, Howlett P C, Pringle J M, Sun J, Annat G, Neil W, Izgorodina E I. Acc Chem Res, 2007, 40: 1165

    21. [21]

      [21] Liu H T, Liu Y, Li J H. Phys Chem Chem Phys, 2010, 12: 1685

    22. [22]

      [22] Mulik A, Chandam D, Patil P, Patil D, Jagdale S, Deshmukh M. J Mol Liq, 2013, 179: 104

    23. [23]

      [23] Welton T. Chem Rev, 1999, 99: 2071

    24. [24]

      [24] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. J Am Chem Soc, 2002, 124: 5962

    25. [25]

      [25] Forbes D C, Weaver K J. J Mol Catal A, 2004, 214: 129

    26. [26]

      [26] Gu Y L, Shi F, Deng Y Q. Catal Commun, 2003, 4: 597

    27. [27]

      [27] Nockemann P, Thijs B, Parac-Vogt T N, Van Hecke K, Van Meervelt L, Tinant B, Hartenbach I, Schleid T, Ngan V T, Nguyen M T, Binnemans K. Inorg Chem, 2008, 47: 9987

    28. [28]

      [28] Bates E D, Mayton R D, Ntai I, Davis J H. J Am Chem Soc, 2002, 124: 926

    29. [29]

      [29] Sarkar A, Roy S R, Parikh N, Chakraborti A K. J Org Chem, 2011, 76: 7132

    30. [30]

      [30] Sarkar A, Roy S R, Chakraborti A K. Chem Commun, 2011, 47: 4538

    31. [31]

      [31] Park D W, Mun N Y, Kim K H, Kim I, Park S W. Catal Today, 2006, 115: 130

    32. [32]

      [32] Tharun J, Kathalikkattil A C, Roshan R, Kang D H, Woo H C, Park D W. Catal Commun, 2014, 54: 31

    33. [33]

      [33] Ju H Y, Manju M D, Kim K H, Park S W, Park D W. J Ind Eng Chem, 2008, 14: 157

    34. [34]

      [34] Kim D W, Roshan R, Tharun J, Cherian A, Park D W. Korean J Chem Eng, 2013, 30: 1973

    35. [35]

      [35] Kim M I, Choi S J, Kim D W, Park D W. J Ind Eng Chem, 2014, 20: 3102

    36. [36]

      [36] Kim D W, Kim C W, Koh J C, Park D W. J Ind Eng Chem, 2010, 16: 474

    37. [37]

      [37] Saravanamurugan S, Riisager A. Catal Today, 2013, 200: 94

    38. [38]

      [38] Fukumoto K, Yoshizawa M, Ohno H. J Am Chem Soc, 2005, 127: 2398

    39. [39]

      [39] Wang C, Liu X M, Yang M, Ma H Y, Yan P F, Slattery J M, Gao Y A. RSC Adv, 2013, 3: 8796

    40. [40]

      [40] Wang C, Liu J, Leng W G, Gao Y A. Int J Mol Sci, 2014, 15: 1284

    41. [41]

      [41] Singh A, Kumar A. J Org Chem, 2012, 77: 8775

    42. [42]

      [42] Zhang S G, Qi X J, Ma X Y, Lu L J, Deng Y Q. J Phys Chem B, 2010, 114: 3912

    43. [43]

      [43] Matsumoto K, Hagiwara R, Yoshida R, Ito Y, Mazej Z, Benkič P, Žemva B, Tamada O, Yoshino H, Matsubara S. Dalton Trans, 2004: 144

    44. [44]

      [44] Srour H, Rouault H, Santini C C, Chauvin Y. Green Chem, 2013, 15: 1341

    45. [45]

      [45] Cull S G, Holbrey J D, Vargas-Mora V, Seddon K R, Lye G J. Biotechnol Bioeng, 2000, 69: 227

    46. [46]

      [46] Schaber P M, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermochim Acta, 2004, 424: 131

    47. [47]

      [47] Li Q B, Zhang W Y, Zhao N, Wei W, Sun Y H. Catal Today, 2006, 115: 111

    48. [48]

      [48] Cláudio A F M, Swift L, Hallett J P, Welton T, Coutinho J A P, Freire M G. Phys Chem Chem Phys, 2014, 16: 6593

    49. [49]

      [49] Roy S R, Chakraborti A K. Org Lett, 2010, 12: 3866

    50. [50]

      [50] Chakraborti A K, Roy S R. J Am Chem Soc, 2009, 131: 6902

    51. [51]

      [51] Chakraborti A K, Roy S R, Kumar D, Chopra P. Green Chem, 2008, 10: 1111

    52. [52]

      [52] Lungwitz R, Strehmel V, Spange S. New J Chem, 2010, 34: 1135

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    5. [5]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    6. [6]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    9. [9]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    10. [10]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    11. [11]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    14. [14]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    15. [15]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    16. [16]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    17. [17]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    19. [19]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    20. [20]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

Metrics
  • PDF Downloads(226)
  • Abstract views(687)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return