Citation: Fangfang Wei, Weiguo Song, Fang Wei, Changyan Cao. Ordered mesoporous silcalite-1 zeolite assembled from colloidal nanocrystalline precursors[J]. Chinese Journal of Catalysis, ;2015, 36(6): 838-844. doi: 10.1016/S1872-2067(14)60255-2 shu

Ordered mesoporous silcalite-1 zeolite assembled from colloidal nanocrystalline precursors

  • Corresponding author: Weiguo Song, 
  • Received Date: 30 September 2014
    Available Online: 20 November 2014

    Fund Project: 国家自然科学基金(21273244, 21333009和21121063). (21273244, 21333009和21121063)

  • A series of ordered mesoporous silicalite-1 zeolites has been synthesized by the self-assembly of nanosized zeolite silicalite-1 seeds with different sizes using a two-step procedure. The nanosized silicalite-1 seeds were prepared with an alkali precursor solution that was heated for different periods, and then assembled into ordered mesoporous materials under strongly acidic conditions, similar to that of mesoporous silica SBA-15 which has well ordered hexagonal mesopores and amorphous walls. A significant change in synthesis conditions prevents the continued growth of zeolite seeds and induces assemblage into ordered mesoporous materials templated by triblock copolymers. The samples assembled by zeolite nanoclusters were investigated by X-ray diffraction, electron microscopy, infrared spectroscopy, and N2 adsorption-desorption isotherms. This "bottom-up" approach yields porous materials that contain ordered micro- and mesopores. The mesoporous zeolite has a large surface area (> 730 m2/g).
  • 加载中
    1. [1]

      [1] Davis M E. Nature, 2002, 417: 813

    2. [2]

      [2] Möller K, Bein T. Chem Soc Rev, 2013, 42: 3689

    3. [3]

      [3] Egeblad K, Christensen C H, Kustova M, Christensen C H. Chem Mater, 2008, 20: 946

    4. [4]

      [4] Wei F F, Cui Z M, Meng X J, Cao C Y, Xiao F S, Song W G. ACS Catal, 2014, 4: 529

    5. [5]

      [5] Mintova S, Gilson J P, Valtchev V. Nanoscale, 2013, 5: 6693

    6. [6]

      [6] Serrano D P, Escola J M, Pizarro P. Chem Soc Rev, 2013, 42: 4004

    7. [7]

      [7] Meng X J, Nawaz F, Xiao F S. Nano Today, 2009, 4: 292

    8. [8]

      [8] Gu F N, Wei F, Yang J Y, Lin N, Lin W G, Wang Y, Zhu J H. Chem Mater, 2010, 22: 2442

    9. [9]

      [9] Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Angew Chem, 2006, 118: 3162

    10. [10]

      [10] Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Nat Mater, 2006, 5: 718

    11. [11]

      [11] Mukti R R, Hirahara H, Sugawara A, Shimojima A, Okubo T. Langmuir, 2010, 26: 2731

    12. [12]

      [12] Tao Y S, Kanoh H, Kaneko K. J Am Chem Soc, 2003, 125: 6044

    13. [13]

      [13] Cho H S, Ryoo R. Micropor Mesopor Mater, 2012, 151: 107

    14. [14]

      [14] Chen H Y, Wydra J, Zhang X Y, Lee P S, Wang Z P, Fan W, Tsapatsis M. J Am Chem Soc, 2011, 133: 12390

    15. [15]

      [15] Wang L F, Yin C Y, Shan Z C, Liu S, Du Y C, Xiao F S. Colloids Surf A, 2009, 340: 126

    16. [16]

      [16] Möller K, Bein T. Science, 2011, 333: 297

    17. [17]

      [17] Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Science, 2011, 333: 328

    18. [18]

      [18] Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461: 246

    19. [19]

      [19] Möller K, Yilmaz B, Jacubinas R M, Müller U, Bein T. J Am Chem Soc, 2011, 133: 5284

    20. [20]

      [20] Zhou J A, Hua Z L, Liu Z C, Wu W, Zhu Y, Shi J L. ACS Catal, 2011, 1: 287

    21. [21]

      [21] Wang J, Groen J C, Yue W B, Zhou W Z, Coppens M O. Chem Commun, 2007, 44: 4653

    22. [22]

      [22] Janssen A H, Koster A J, de Jong K P. Angew Chem Int Ed, 2001, 40: 1102

    23. [23]

      [23] Ogura M, Shinomiya S Y, Tateno J, Nara Y, Kikuchi E, Matsukata M. Chem Lett, 2000, 29: 882

    24. [24]

      [24] Liu Y, Zhang W Z, Pinnavaia T J. J Am Chem Soc, 2000, 122: 8791

    25. [25]

      [25] Liu Y, Zhang W Z, Pinnavaia T J. Angew Chem Int Ed, 2001, 40: 1255

    26. [26]

      [26] Carr C S, Kaskel S, Shantz D F. Chem Mater, 2004, 16: 3139

    27. [27]

      [27] Jacobs P A, Derouane E G, Weitkamp J. J Chem Soc, Chem Commun, 1981, 591

    28. [28]

      [28] de Moor P P E A, Beelen T P M, van Santen R A. J Phys Chem B, 1999, 103: 1639

    29. [29]

      [29] Davis T M, Drews T O, Ramanan H, He C, Dong J S, Schnablegger H, Katsoulakis M A, Kokkoli E, McCormick A V, Penn R L, Tsapatsis M. Nat Mater, 2006, 5: 400

    30. [30]

      [30] Wiersema G S, Thompson R W. J Mater Chem, 1996, 6: 1693

    31. [31]

      [31] Li H, Wu H Z, Shi J L. J Alloys Compd, 2013, 556: 71

    32. [32]

      [32] Zhu Y, Hua Z L, Zhou J, Wang L J, Zhao J J, Gong Y, Wu W, Ruan M L, Shi J L. Chem Eur J, 2011, 17: 14618

    33. [33]

      [33] Han Y, Li N, Zhao L, Li D F, Xu X Z, Wu S, Di Y, Li C J, Zou Y C, Yu Y, Xiao F S. J Phys Chem B, 2003, 107: 7551

    34. [34]

      [34] Sun Y Y, Han Y, Yuan L, Ma S Q, Jiang D H, Xiao F S. J Phys Chem B, 2003, 107: 1853

    35. [35]

      [35] Han Y, Wu S, Sun Y Y, Li D S, Xiao F S, Liu J, Zhang X Z. Chem Mater, 2002, 14: 1144

    36. [36]

      [36] Han Y, Xiao F S, Wu S, Sun Y Y, Meng X J, Li D S, Lin S, Deng F, Ai X J. J Phys Chem B, 2001, 105: 7963

    37. [37]

      [37] Wang C L, Zhu G S, Shang T C, Cai X H, Liu C Z, Li N, Wei Y H, Li J, Zhang W W, Qiu S L. Solid State Commun, 2005, 135: 257

    38. [38]

      [38] de Moor P-P E A, Beelen T P M, van Santen R A. J Phys Chem B, 1999, 103: 1639

    39. [39]

      [39] Song J W, Ren L M, Yin C Y, Ji Y Y, Wu Z F, Li J X, Xiao F S. J Phys Chem C, 2008, 112: 8609

    40. [40]

      [40] Song W G, Justice R E, Jones C A, Grassian V H, Larsen S C. Langmuir, 2004, 20: 4696

    41. [41]

      [41] Kirschhock C E A, Kremer S P B, Vermant J, Van Tendeloo G, Jacobs P A, Martens J A. Chem Eur J, 2005, 11: 4306

    42. [42]

      [42] Coronas J. Chem Eng J, 2010, 156: 236

    43. [43]

      [43] Kirschhock C E A, Ravishankar R, Van Looveren L, Jacobs P A, Martens J A. J Phys Chem B, 1999, 103: 4972

    44. [44]

      [44] Song W, Justice R, Jones C, Grassian V, Larsen S. Langmuir, 2004, 20: 4696

    45. [45]

      [45] Linssen T, Cassiers K, Cool P, Vansant E F. Adv Colloid Interf Sci, 2003, 103: 121

    46. [46]

      [46] Miyazawa K, Inagaki S. Chem Commun, 2000, 21: 2121

    47. [47]

      [47] Göltner C G, Smarsly B, Berton B, Antonietti M. Chem Mater, 2001, 13: 1617

    48. [48]

      [48] Kirschhock C E A, Ravishankar R, Verspeurt F, Grobet P J, Jacobs P A, Martens J A. J Phys Chem B, 1999, 103: 4965

    49. [49]

      [49] Fang Y M, Hu H Q. J Am Chem Soc, 2006, 128: 10636

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    11. [11]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    12. [12]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    16. [16]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    17. [17]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    18. [18]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    19. [19]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(1)
  • Abstract views(472)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return