Citation: Yanpeng Pei, Yunjie Ding, Hejun Zhu, Hong Du. One-step production of C1-C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2[J]. Chinese Journal of Catalysis, ;2015, 36(3): 355-361. doi: 10.1016/S1872-2067(14)60252-7 shu

One-step production of C1-C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2

  • Corresponding author: Yunjie Ding, 
  • Received Date: 13 September 2014
    Available Online: 12 November 2014

  • The promotional effect of SiO2 on the catalytic synthesis of mixed C1-C18 alcohols from syngas using the Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts was investigated. X-ray diffraction, H2 temperature-programmed reduction, pulsed CO chemisorption and N2 physisorption techniques were all employed to assess the catalyst. Although the addition of SiO2 decreased the reducibility of the Co component, Co dispersion was significantly increased and its aggregation during reaction was inhibited, resulting in greatly enhanced reaction activity. Appropriate amounts of SiO2 also promoted the formation of Co2C, leading to an increased selectivity for C1-C18 alcohols. More importantly, the addition of SiO2 favored the formation of higher molecular mass alcohols (C6-C18) by suppressing Co reduction, thus producing an abundance of Co(II) species capable of facilitating CO insertion.
  • 加载中
    1. [1]

      [1] Khodakov A Y, Chu W, Fongarland P. Chem Rev, 2007, 107: 1692

    2. [2]

      [2] Torres Galvis H M, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Science, 2012, 335: 835

    3. [3]

      [3] Fischer F, Tropsch H. Brennst Chem, 1923, 18: 274

    4. [4]

      [4] Li H L, Wang S G, Ling F X, Li J L. J Mol Catal A, 2006, 244: 33

    5. [5]

      [5] Anderson R B, Kölbel H, Ralek M. The Fischer-Tropsch Synthesis. Orland: Academic Press, 1984. 122

    6. [6]

      [6] Forzatti P, Tronconi E, Pasquon I. Catal Rev-Sci Eng, 1991, 33: 109

    7. [7]

      [7] Baker J E, Burch R, Hibble S J, Loader P K. Appl Catal A, 1990, 65: 281

    8. [8]

      [8] Yang X M, Wei Y, Su Y L, Zhou L P. Fuel Process Technol, 2010, 91: 1168

    9. [9]

      [9] Jiao G P, Ding Y J, Zhu H J, Li X M, Li J W, Lin R H, Dong W D, Gong L F, Pei Y P, Lu Y. Appl Catal A, 2009, 364: 137

    10. [10]

      [10] Pei Y P, Ding Y J, Zang J, Song X G, Dong W D, Zhu H J, Wang T, Chen W M. Chin J Catal (裴彦鹏, 丁云杰, 臧娟, 宋宪根, 董文达, 朱何俊, 王涛, 陈维苗. 催化学报), 2012, 33: 808

    11. [11]

      [11] Pei Y P, Ding Y J, Zang J, Song X G, Dong W D, Zhu H J, Wang T, Chen W M. Chin J Catal(裴彦鹏, 丁云杰, 臧娟, 宋宪根, 董文达, 朱何俊, 王涛, 陈维苗. 催化学报), 2013, 34: 1570

    12. [12]

      [12] Pei Y P, Ding Y J, Zhu H J, Zang J, Song X G, Dong W D, Wang T, Lu Y. Catal Lett, 2014, 144: 1433

    13. [13]

      [13] Dlamini H, Motjope T, Joorst G, Stegeter G, Mdleleni M. Catal Lett, 2002,78: 201

    14. [14]

      [14] Sun X Y, Zhang X J, Zhang Y, Tsubaki N. Appl Catal A, 2010, 377: 134

    15. [15]

      [15] Ma W P, Kugler E L, Dadyburjor D B. Energy Fuels, 2010, 24: 4099

    16. [16]

      [16] Bechara R, Balloy D, Dauphin J Y, Grimblot J. Chem Mater, 1999, 11: 1703

    17. [17]

      [17] Dimitrova P G, Mehandjiev D R. J Catal, 1994, 145: 356

    18. [18]

      [18] de Miguel S R, Romon-Martinez M C, Jablonski E L, Fierro J L G, Cazorla-Amoros D, Scelza O A. J Catal, 1999, 184: 514

    19. [19]

      [19] Díaz K, García V, Matos J. Fuel, 2007, 86: 1337

    20. [20]

      [20] Fan L, Yokota K, Fujimoto K. AIChE J, 1992, 38: 1639

    21. [21]

      [21] Xiong J M, Ding Y J, Wang T, Yan L, Chen W M, Zhu H J, Lu Y. Catal Lett, 2005, 102: 265

    22. [22]

      [22] Lebarbier V M, Mei D H, Kim D H, Andersen A, Male J L, Holladay J E, Rousseau R, Wang Y. J Phys Chem C, 2011, 115: 17440

    23. [23]

      [23] Lü Z P, Tang H D, Liu C L, Liu H Z. Chin J Catal (吕兆坡, 唐浩东, 刘采来, 刘化章. 催化学报), 2011, 32: 1250

    24. [24]

      [24] Visconti C G, Tronconi E, Lietti L, Zennaro R, Forzatti P. Chem Eng Sci, 2007, 62: 5338

    25. [25]

      [25] Kuipers E W, Scheper C, Wilson J H, Vinkenburg I H, Oosterbeek H. J Catal, 1996, 158: 288

    26. [26]

      [26] Bezemer G L, Bitter J H, Kuipers H P C E, Oosterbeek H, Holewijn J E, Xu X D, Kapteijn F, van Dillen A J, de Jong K P. J Am Chem Soc, 2006, 128: 3956

    27. [27]

      [27] den Breejen J P, Radstake P B, Bezemer G L, Bitter J H, Frøseth V, Holmen A, de Jong K P. J Am Chem Soc, 2009, 131: 7197

    28. [28]

      [28] Song D C, Li J L. J Mol Catal A, 2006, 247: 206

    29. [29]

      [29] Lögdberg S, Lualdi M, Järås S, Walmsley J C, Blekkan E A, Rytter E, Holmen A. J Catal, 2010, 274: 84

    30. [30]

      [30] Pei Y P, Ding Y J, Zhu H J, Zang J, Song X G, Dong W D, Wang T, Yan L, Lu Y. Reac Kinet Mech Catal, 2014, 111: 505

    31. [31]

      [31] de Aquino A D, Cobo A J G. Catal Today, 2001, 65: 209

    32. [32]

      [32] Balonek C M, Lillebo A H, Rane S, Rytter E, Schmidt L D, Holmen A. Catal Lett, 2010, 138: 8

    33. [33]

      [33] Ishida T, Yanagihara T, Liu X H, Ohashi H, Hamasaki A, Honma T, Oji H, Yokoyama T, Tokunaga M. Appl Catal A, 2013, 458: 145

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    13. [13]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    14. [14]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

Metrics
  • PDF Downloads(204)
  • Abstract views(735)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return