Citation: Yanpeng Pei, Yunjie Ding, Hejun Zhu, Hong Du. One-step production of C1-C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2[J]. Chinese Journal of Catalysis, ;2015, 36(3): 355-361. doi: 10.1016/S1872-2067(14)60252-7 shu

One-step production of C1-C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2

  • Corresponding author: Yunjie Ding, 
  • Received Date: 13 September 2014
    Available Online: 12 November 2014

  • The promotional effect of SiO2 on the catalytic synthesis of mixed C1-C18 alcohols from syngas using the Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts was investigated. X-ray diffraction, H2 temperature-programmed reduction, pulsed CO chemisorption and N2 physisorption techniques were all employed to assess the catalyst. Although the addition of SiO2 decreased the reducibility of the Co component, Co dispersion was significantly increased and its aggregation during reaction was inhibited, resulting in greatly enhanced reaction activity. Appropriate amounts of SiO2 also promoted the formation of Co2C, leading to an increased selectivity for C1-C18 alcohols. More importantly, the addition of SiO2 favored the formation of higher molecular mass alcohols (C6-C18) by suppressing Co reduction, thus producing an abundance of Co(II) species capable of facilitating CO insertion.
  • 加载中
    1. [1]

      [1] Khodakov A Y, Chu W, Fongarland P. Chem Rev, 2007, 107: 1692

    2. [2]

      [2] Torres Galvis H M, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Science, 2012, 335: 835

    3. [3]

      [3] Fischer F, Tropsch H. Brennst Chem, 1923, 18: 274

    4. [4]

      [4] Li H L, Wang S G, Ling F X, Li J L. J Mol Catal A, 2006, 244: 33

    5. [5]

      [5] Anderson R B, Kölbel H, Ralek M. The Fischer-Tropsch Synthesis. Orland: Academic Press, 1984. 122

    6. [6]

      [6] Forzatti P, Tronconi E, Pasquon I. Catal Rev-Sci Eng, 1991, 33: 109

    7. [7]

      [7] Baker J E, Burch R, Hibble S J, Loader P K. Appl Catal A, 1990, 65: 281

    8. [8]

      [8] Yang X M, Wei Y, Su Y L, Zhou L P. Fuel Process Technol, 2010, 91: 1168

    9. [9]

      [9] Jiao G P, Ding Y J, Zhu H J, Li X M, Li J W, Lin R H, Dong W D, Gong L F, Pei Y P, Lu Y. Appl Catal A, 2009, 364: 137

    10. [10]

      [10] Pei Y P, Ding Y J, Zang J, Song X G, Dong W D, Zhu H J, Wang T, Chen W M. Chin J Catal (裴彦鹏, 丁云杰, 臧娟, 宋宪根, 董文达, 朱何俊, 王涛, 陈维苗. 催化学报), 2012, 33: 808

    11. [11]

      [11] Pei Y P, Ding Y J, Zang J, Song X G, Dong W D, Zhu H J, Wang T, Chen W M. Chin J Catal(裴彦鹏, 丁云杰, 臧娟, 宋宪根, 董文达, 朱何俊, 王涛, 陈维苗. 催化学报), 2013, 34: 1570

    12. [12]

      [12] Pei Y P, Ding Y J, Zhu H J, Zang J, Song X G, Dong W D, Wang T, Lu Y. Catal Lett, 2014, 144: 1433

    13. [13]

      [13] Dlamini H, Motjope T, Joorst G, Stegeter G, Mdleleni M. Catal Lett, 2002,78: 201

    14. [14]

      [14] Sun X Y, Zhang X J, Zhang Y, Tsubaki N. Appl Catal A, 2010, 377: 134

    15. [15]

      [15] Ma W P, Kugler E L, Dadyburjor D B. Energy Fuels, 2010, 24: 4099

    16. [16]

      [16] Bechara R, Balloy D, Dauphin J Y, Grimblot J. Chem Mater, 1999, 11: 1703

    17. [17]

      [17] Dimitrova P G, Mehandjiev D R. J Catal, 1994, 145: 356

    18. [18]

      [18] de Miguel S R, Romon-Martinez M C, Jablonski E L, Fierro J L G, Cazorla-Amoros D, Scelza O A. J Catal, 1999, 184: 514

    19. [19]

      [19] Díaz K, García V, Matos J. Fuel, 2007, 86: 1337

    20. [20]

      [20] Fan L, Yokota K, Fujimoto K. AIChE J, 1992, 38: 1639

    21. [21]

      [21] Xiong J M, Ding Y J, Wang T, Yan L, Chen W M, Zhu H J, Lu Y. Catal Lett, 2005, 102: 265

    22. [22]

      [22] Lebarbier V M, Mei D H, Kim D H, Andersen A, Male J L, Holladay J E, Rousseau R, Wang Y. J Phys Chem C, 2011, 115: 17440

    23. [23]

      [23] Lü Z P, Tang H D, Liu C L, Liu H Z. Chin J Catal (吕兆坡, 唐浩东, 刘采来, 刘化章. 催化学报), 2011, 32: 1250

    24. [24]

      [24] Visconti C G, Tronconi E, Lietti L, Zennaro R, Forzatti P. Chem Eng Sci, 2007, 62: 5338

    25. [25]

      [25] Kuipers E W, Scheper C, Wilson J H, Vinkenburg I H, Oosterbeek H. J Catal, 1996, 158: 288

    26. [26]

      [26] Bezemer G L, Bitter J H, Kuipers H P C E, Oosterbeek H, Holewijn J E, Xu X D, Kapteijn F, van Dillen A J, de Jong K P. J Am Chem Soc, 2006, 128: 3956

    27. [27]

      [27] den Breejen J P, Radstake P B, Bezemer G L, Bitter J H, Frøseth V, Holmen A, de Jong K P. J Am Chem Soc, 2009, 131: 7197

    28. [28]

      [28] Song D C, Li J L. J Mol Catal A, 2006, 247: 206

    29. [29]

      [29] Lögdberg S, Lualdi M, Järås S, Walmsley J C, Blekkan E A, Rytter E, Holmen A. J Catal, 2010, 274: 84

    30. [30]

      [30] Pei Y P, Ding Y J, Zhu H J, Zang J, Song X G, Dong W D, Wang T, Yan L, Lu Y. Reac Kinet Mech Catal, 2014, 111: 505

    31. [31]

      [31] de Aquino A D, Cobo A J G. Catal Today, 2001, 65: 209

    32. [32]

      [32] Balonek C M, Lillebo A H, Rane S, Rytter E, Schmidt L D, Holmen A. Catal Lett, 2010, 138: 8

    33. [33]

      [33] Ishida T, Yanagihara T, Liu X H, Ohashi H, Hamasaki A, Honma T, Oji H, Yokoyama T, Tokunaga M. Appl Catal A, 2013, 458: 145

  • 加载中
    1. [1]

      Wenhao Dong Qin Ma Xiaocan Wu . Large Unit Teaching Design in Physical Chemistry from the Perspective of Curriculum Ideological and Political Educaiton: A Case of the “Coal-to-Liquids Project in Ningxia”. University Chemistry, 2025, 40(11): 134-140. doi: 10.12461/PKU.DXHX202501017

    2. [2]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    3. [3]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    11. [11]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    12. [12]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    13. [13]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    14. [14]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    15. [15]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    16. [16]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    17. [17]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(204)
  • Abstract views(957)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return