Citation: Yu Long, Bing Yuan, Jiantai Ma. Epoxidation of alkenes efficiently catalyzed by Mo salen supported on surface-modified halloysite nanotubes[J]. Chinese Journal of Catalysis, ;2015, 36(3): 348-354. doi: 10.1016/S1872-2067(14)60244-8 shu

Epoxidation of alkenes efficiently catalyzed by Mo salen supported on surface-modified halloysite nanotubes

  • Corresponding author: Jiantai Ma, 
  • Received Date: 13 September 2014
    Available Online: 3 November 2014

  • Halloysite-nanotube-supported Mo salen (HNTs-Mo-SL) catalysts were successfully prepared using a facile chemical surface modification and self-assembly method. The morphologies, sizes, structure, and dispersion of the as-prepared catalysts were investigated by transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared, inductively coupled plasma, and X-ray photoelectron spectroscopy, which confirmed the existence of the Mo salen structure and successful synthesis of the HNTs-Mo-SL catalyst. The immobilized catalyst was found to be highly reactive in the epoxidation of a wide range of alkenes, including linear, cyclic, and aromatic alkenes. The immobilized catalyst exhibited a higher catalytic activity for alkene epoxidation than homogeneous Mo. In contrast experiments, it was determined that the salen structure played an important role in immobilizing MoO(O2)2(DMF)2 and improving the conversion and efficiency of alkene epoxidation, which could not be obtained using other ligands, such as the N atom as a single ligand. Furthermore, the bonding between Mo and the salen ligands and the possible mechanism of alkene epoxidation catalyzed by the catalyst were determined. The catalyst could be reused several times without significant loss of catalytic activity. Given that halloysite nanotubes are cheap and easy to obtain, this catalyst offers a novel alternative for the rational design of catalysts with desired features.
  • 加载中
    1. [1]

      [1] Lane B S, Burgess K. Chem Rev, 2003, 103: 2457

    2. [2]

      [2] Joergensen K A. Chem Rev, 1989, 89: 431

    3. [3]

      [3] Zou X C, Shi K Y, Wang C. Chin J Catal(邹晓川, 石开云, 王存. 催化学报), 2014, 35: 1446

    4. [4]

      [4] Qi B, Lu X H, Fang S Y, Lei J, Dong Y L, Zhou D, Xia Q H. J Mol Catal A, 2011, 334: 44

    5. [5]

      [5] Xu G, Xia Q H, Lu X H, Zhang Q, Zhan H J. J Mol Catal A, 2007, 266: 180

    6. [6]

      [6] Calvente R M, Campos-Martin J M, Fierro J L G. CatalCommun, 2002, 3: 247

    7. [7]

      [7] Thiel W R. J Mol Catal A, 1997, 117: 449

    8. [8]

      [8] Bakala P C, Briot E, Salles L, Brégeault J M. Appl Catal A, 2006, 300: 91

    9. [9]

      [9] Jarupatrakorn J, Coles M P, Tilley T D. Chem Mater, 2005, 17: 1818

    10. [10]

      [10] Wang G, Feng L S, Luck R L, Evans D G, Wang Z Q, Duan X. J Mol Catal A, 2005, 241: 8

    11. [11]

      [11] Yuan C Y, Zhang Y, Chen J. Chin J Catal(袁程远, 张妍, 陈静. 催化学报), 2011, 32: 1166

    12. [12]

      [12] Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor- Baltork I, Ghani K. InorgChem Commun, 2008, 11: 270

    13. [13]

      [13] Bruno S M, Fernandes J A, Martins L S, Gonçalves I S, Pillinger M, Ribeiro-Claro P, Rocha J, Valente A A. CatalToday, 2006, 114: 263

    14. [14]

      [14] Zhu H Y, Zhang Y, Zhou D G, Guan J, Bao X H. Chin J Catal(朱洪元, 张元, 周丹红, 关静, 包信和. 催化学报), 2007, 28: 180

    15. [15]

      [15] Sakthivel A, Zhao J, Raudaschl-Sieber G, Hanzlik M, Chiang A S T, Kühn F E. Appl Catal A, 2005, 281: 267

    16. [16]

      [16] Jia M J, Seifert A, Thiel W R. Chem Mater, 2003, 15: 2174

    17. [17]

      [17] Xing S Y, Zhou D H, Cao L, Li X. Chin J Catal(邢双英, 周丹红, 曹亮, 李新. 催化学报), 2010, 31: 415

    18. [18]

      [18] Sakthivel A, Zhao J, Kühn F E. Catal Lett, 2005, 102: 115

    19. [19]

      [19] MoghadamM, Tangestaninejad S, Mirkhani V, Mohammadpoor- Baltork I, Mirbagheri N S. J Organomet Chem, 2010, 695: 2014

    20. [20]

      [20] Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor- Baltork I, Mirjafari A, Mirbagheria N S. J Mol Catal A, 2010, 329: 44

    21. [21]

      [21] Beall G W, Sowersby D S, Roberts R D, Robson M H, Lewis L K. Biomacromolecules, 2009, 10: 105

    22. [22]

      [22] Shamsi M H, Geckeler K E. Nanotechnology, 2008, 19: 075604

    23. [23]

      [23] Hirano Y, Miura Y F, Sugi M, Ishii T. Colloids Surf A, 2002, 198-200: 37

    24. [24]

      [24] Yah W O, Xu H, Soejima H, Ma W, Lvov Y, Takahara A. J Am Chem Soc, 2012, 134: 12134

    25. [25]

      [25] Yao Y, Chaubey G S, Wiley J B. J Am Chem Soc, 2012, 134: 2450

    26. [26]

      [26] Abdullayev E, Joshi A, Wei W B, Zhao Y F, Lvov Y. ACS Nano, 2012, 6: 7216

    27. [27]

      [27] Islam M R, Bach L G, Lim K T. Appl Surf Sci, 2013, 276: 298

    28. [28]

      [28] Shchukin D G, Lamaka S V, Yasakau K A, Zheludkevich M L, Ferreira M G S, Möhwald H. J Phys Chem C, 2008, 112: 958

    29. [29]

      [29] Ranganatha S, Venkatesha T V, Vathsala K. Appl Surf Sci, 2012, 263: 149

    30. [30]

      [30] Fix D, Andreeva D V, Lvov Y M, Shchukin D G, Möhwald H. Adv Funct Mater, 2009, 19: 1720

    31. [31]

      [31] Shchukin D G, Sukhorukov G B, Price R R, Lvov Y M. Small, 2005, 1: 510

    32. [32]

      [32] Wan C Y, Li M, Bai X, Zhang Y. J Phys Chem C, 2009, 113: 16238

    33. [33]

      [33] Jiang J Q, Zhang Y W, Yan L W, Jiang P K. Appl Surf Sci, 2012, 258: 6637

    34. [34]

      [34] Pan J M, Wang B, Dai J D, Dai X H, Hang H, Ou H X, Yan Y S. J Mater Chem, 2012, 22: 3360

    35. [35]

      [35] Wang L, Chen J L, Ge L, Zhu Z H, Rudolph V. Energy Fuels, 2011, 25: 3408

    36. [36]

      [36] Wang R J, Jiang G H, Ding Y W, Wang Y, Sun X K, Wang X H, Chen W X. ACS Appl Mater Interfaces, 2011, 3: 4154

    37. [37]

      [37] Mimoun H, de Roch I S, Sajus L. Bull Soc Chim France, 1969: 1481

    38. [38]

      [38] Ding H J, Wang G, Yang M, Luan Y, Wang Y N, Yao X X. J Mol Catal A, 2009, 308: 25

    39. [39]

      [39] Masteri-Farahani M. J Mol Catal A, 2010, 316: 45

  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    3. [3]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    6. [6]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    7. [7]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(193)
  • Abstract views(1097)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return