Citation: Huimin Liu, Yuming Li, Hao Wu, Jiaxiong Liu, Dehua He. Effects of α- and γ-cyclodextrin-modified impregnation method on physicochemical properties of Ni/SBA-15 and its catalytic performance in CO2 reforming of methane[J]. Chinese Journal of Catalysis, ;2015, 36(3): 283-289. doi: 10.1016/S1872-2067(14)60242-4 shu

Effects of α- and γ-cyclodextrin-modified impregnation method on physicochemical properties of Ni/SBA-15 and its catalytic performance in CO2 reforming of methane

  • Corresponding author: Dehua He, 
  • Received Date: 14 September 2014
    Available Online: 20 October 2014

  • Organic compounds containing multiple hydroxyl groups, namely α-cyclodextrin and γ-cyclodextrin, were used as additives for promoting Ni dispersion on supported Ni/SBA-15 catalysts. Catalysts prepared using modified and unmodified impregnation methods were characterized using N2 adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, temperature-programmed reduction, and thermogravimetric analysis, and their catalytic performance in the CO2 reforming of methane (CRM) to syngas was evaluated. The results show that compared with Ni/SBA-15 prepared using a conventional impregnation method, the cyclodextrin-modified catalysts had smaller NiO particles. They also exhibited higher catalytic activity and had stronger ability to resist carbon deposition in the CRM. Mechanistic studies showed that for the unmodified catalysts, Ni2+ could migrate into the channels of SBA-15 as a result of concentration differences, and the Ni species were sintered during the following thermal treatment processes, and could not be well dispersed. In contrast, various types of complex were formed between Ni(NO3)2 and the cyclodextrins, and this would be favorable for Ni2+ being taken into the channels of the SBA-15. The presence of cyclodextrins was beneficial to the mutual isolation of Ni species, and finally resulted in better dispersion of Ni species.
  • 加载中
    1. [1]

      [1] Bae J W, Kim A R, Baek S C, Jun K W. React Kinet Mech Catal, 2011, 104: 377

    2. [2]

      [2] Murata S, Hatanaka N, Kidena K, Nomura M. J Jpn Petrol Inst, 2006, 49: 240

    3. [3]

      [3] Fidalgo B, Menendez J A. Chin J Catal (催化学报), 2011, 32: 207

    4. [4]

      [4] Song C S, Pan W. Catal Today, 2004, 98: 463

    5. [5]

      [5] Tang S, Ji L, Lin J, Zeng H C, Tan K L, Li K. J Catal, 2000, 194: 424

    6. [6]

      [6] Kim D K, Stöwe K, Müller F, Maier W F. J Catal, 2007, 247: 101

    7. [7]

      [7] Laosiripojana N, Sutthisripok W, Assabumrungrat S. Chem Eng J, 2005, 112: 13

    8. [8]

      [8] Huang J, Ma R X, Gao Z H, Shen C F, Huang W. Chin J Catal (黄健, 马人熊, 高志华, 沈朝峰, 黄伟. 催化学报), 2012, 33: 637

    9. [9]

      [9] Bitter J H, Seshan K, Lercher J A. J Catal, 1999, 183: 336

    10. [10]

      [10] Zhang J, Zhao N, Wei W, Sun Y H. Int J Hydrogen Energy, 2010, 35: 11776

    11. [11]

      [11] Serrano-Lotina A, Martin A J, Folgado M A, Daza L. Int J Hydrogen Energy, 2012, 37: 12342

    12. [12]

      [12] Gallego G S, Mondragon F, Barrault J, Tatibouet J M, Batiot-Dupeyrat C. Appl Catal A, 2006, 311: 164

    13. [13]

      [13] Moradi G R, Rahmanzadeh M, Sharifnia S. Chem Eng J, 2010, 162: 787

    14. [14]

      [14] Choudhary V R, Mondal K C. Appl Energy, 2006, 83:1024

    15. [15]

      [15] Zhang M L, Ji S F, Hu L H, Yin F X, Li C Y, Liu H. Chin J Catal (张美丽, 季生福, 胡林华, 银凤翔, 李成岳, 刘辉. 催化学报), 2006, 27: 777

    16. [16]

      [16] Albarazi A, Beaunier P, DaCosta P. Int J Hydrogen Energy, 2013, 38: 217

    17. [17]

      [17] Liu D P, Quek X Y, Cheo W N E, Lau R, Borgna A, Yang Y H. J Catal, 2009, 266: 380

    18. [18]

      [18] Liu H M, Li Y M, Wu H, Takayama H, Miyake T, He D H. Catal Commun, 2012, 28: 168

    19. [19]

      [19] Zhou W, He D H. Green Chem, 2009, 11: 1146

    20. [20]

      [20] Dong W S, Roh H S, Jun K W, Park S E, Oh Y S. Appl Catal A, 2002, 226: 63

    21. [21]

      [21] Szejtli J. Pure Appl Chem, 2004, 76: 1825

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    9. [9]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    14. [14]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

Metrics
  • PDF Downloads(230)
  • Abstract views(719)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return