Citation: Hui Chen, Jie Zhao, Shaozhong Li, Jun Xu, Jianyi Shen. Effects of water on the hydrogenation of acetone over Ni/MgAlO catalysts[J]. Chinese Journal of Catalysis, ;2015, 36(3): 380-387. doi: 10.1016/S1872-2067(14)60240-0 shu

Effects of water on the hydrogenation of acetone over Ni/MgAlO catalysts

  • Corresponding author: Jianyi Shen, 
  • Received Date: 15 August 2014
    Available Online: 29 September 2014

    Fund Project: 国家自然科学基金(21273105) (21273105) 江苏省自然科学基金青年基金(BK20140596) (BK20140596)

  • The effect of water on the hydrogenation of acetone to isopropanol (IPA) on the Ni/MgAlO catalyst was studied. It was found that small amount of water added in the acetone promoted the conversion of acetone to IPA, while more H2O added (>5%) significantly decreased the conversion of acetone. Microcalorimetric adsorption results showed that the presence of small amount of pre-adsorbed water (4% coverage) enhanced the adsorption of acetone while inhibited the adsorption of IPA on Ni, which might be the important reasons for the promotion effect of some water on the hydrogenation of acetone to IPA. On the other hand, the heats for the adsorption of H2, acetone and IPA on the Ni/MgAlO were significantly decreased when more water was pre-adsorbed, which might explain the inhibition effect of more water on the hydrogenation of acetone. The results of infrared spectroscopy revealed that the presence of water suppressed the dehydrogenation of adsorbed IPA to acetone and the formation of enolate and mesityl oxide species from adsorbed acetone, which might be the other reasons for the positive effect of water on the hydrogenation of acetone to IPA.
  • 加载中
    1. [1]

      [1] Mäki-Arvela P, Hájek J, Salmi T, Yu Murzin D. Appl Catal A, 2005, 292: 1

    2. [2]

      [2] Singh U K, Vannice M A. Appl Catal A, 2001, 213: 1

    3. [3]

      [3] Mukherjee S, Vannice M A. J Catal, 2006, 243: 108

    4. [4]

      [4] Otto R, Brox J, Trippel S, Stei M, Best T, Wester R. Nat Chem, 2012, 4: 534

    5. [5]

      [5] Minakata S, Komatsu M. Chem Rev, 2009, 109: 711

    6. [6]

      [6] Chanda A, Fokin V V. Chem Rev, 2009, 109: 725

    7. [7]

      [7] Gómez-Quero S, Díaz E, Cárdenas-Lizana F, Keane M A. Chem Eng Sci, 2010, 65: 3786

    8. [8]

      [8] Butler R N, Coyne A G. Chem Rev, 2010, 110: 6302

    9. [9]

      [9] Cheng H Y, Meng X C, Yu Y C, Zhao F Y. Appl Catal A, 2013, 455: 8

    10. [10]

      [10] Masson J, Cividino P, Court J. Appl Catal A, 1997, 161: 191

    11. [11]

      [11] Akpa B S, D’Agostino C, Gladden L F, Hindle K, Manyar H, McGregor J, Li R, Neurock M, Sinha N, Stitt E H, Weber D, Zeitler J A, Rooney D W. J Catal, 2012, 289: 30

    12. [12]

      [12] Vaidya P D, Mahajani V V. Chem Eng Sci, 2005, 60: 1881

    13. [13]

      [13] Wan H J, Vitter A, Chaudhari R V, Subramaniam B. J Catal, 2014, 309: 174

    14. [14]

      [14] Li M S, Wang X D, Perret N, Keane M A. Catal Commun, 2014, 46: 187

    15. [15]

      [15] Houtman C, Barteau M A. J Phys Chem, 1991, 95: 3755

    16. [16]

      [16] Anton A B, Avery N R, Toby B H, Weinberg W H. J Am Chem Soc, 1986, 108: 684

    17. [17]

      [17] Vannice M A, Erley W, Ibach H. Surf Sci, 1991, 254: 1

    18. [18]

      [18] Jeffery E L, Mann R K, Hutchings G J, Taylor S H, Willock D J. Catal Today, 2005, 105: 85

    19. [19]

      [19] Sim W S, Li T C, Yang P X, Yeo B S. J Am Chem Soc, 2002, 124: 4970

    20. [20]

      [20] Hanson B E, Wieserman L F, Wagner G W, Kaufman R A. Langmuir, 1987, 3: 549

    21. [21]

      [21] Zaki M I, Hasan M A, Al-Sagheer F A, Pasupulety L. Langmuir, 2000, 16: 430

    22. [22]

      [22] Santz J F, Ovideo J, Marquez A, Odriozola J A, Montes M. Angew Chem Int Ed, 1999, 38: 506

    23. [23]

      [23] Shorthouse L J, Roberts A J, Raval R. Surf Sci, 2001, 480: 37

    24. [24]

      [24] Brown N F, Barteau M A. J Am Chem Soc, 1992, 114: 4258

    25. [25]

      [25] Davis J L, Barteau M A. J Mol Catal, 1992, 77: 109

    26. [26]

      [26] Martinez-Ramirez Z, Gonzalez-Calderon J A, Almendarez-Cama-rillo A, Fierro-Gonzalez J C. Surf Sci, 2012, 606: 1167

    27. [27]

      [27] Zhao J, Chen H, Tian X C, Zang H, Fu Y C, Shen J Y. J Catal, 2013, 298: 161

    28. [28]

      [28] Zhao J, Chen H, Xu J, Shen J Y. J Phys Chem C, 2013, 117: 10573

    29. [29]

      [29] Chen H, Xue M W, Hu S H, Shen J Y. Chem Eng J, 2012, 181-182: 677

    30. [30]

      [30] Al-Dahhan M H, Larachi F, Dukukovic M P, Laurent A. Ind Eng Chem Res, 1997, 36: 3292

    31. [31]

      [31] Bizzi M, Basini L, Saracco G, Specchia V. Chem Eng J, 2002, 90: 97

    32. [32]

      [32] Henderson M A. Surf Sci Rep, 2002, 46: 1

    33. [33]

      [33] Hodgson A, Haq S. Surf Sci Rep, 2009, 64: 381

    34. [34]

      [34] Ozensoy E, Szanyi J, Peden C H F. J Phys Chem B, 2005, 109: 3431

    35. [35]

      [35] Phatak A A, Delgass W N, Ribeiro F H, Schneider W F. J Phys Chem C, 2009, 113: 7269

    36. [36]

      [36] Shin H J, Jung J, Motobayashi K, Yanagisawa S, Morikawa Y, Kim Y, Kawai M. Nat Mater, 2010, 9: 442

    37. [37]

      [37] Koningsberger D C, Ramaker D E, Miller J T, de Graaf J, Mojet B L. Top Catal, 2001, 15: 35

    38. [38]

      [38] Rahman A. Bull Chem React Eng Catal, 2010, 5(2): 113

    39. [39]

      [39] Shimizu K I, Sugino K, Sawabe K, Satsuma A. Chem Eur J, 2009, 15: 2341

    40. [40]

      [40] Zaki M I, Hasan M A, Pasupulety L. Langmuir, 2001, 17: 4025

  • 加载中
    1. [1]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    7. [7]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    12. [12]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    13. [13]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

Metrics
  • PDF Downloads(209)
  • Abstract views(978)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return