Citation:
Jing Zhang, Teng Li, Dongjiang Wang, Jialiang Zhang, Hongchen Guo. The catalytic effect of H2 in the dehydrogenation coupling production of ethylene glycol from methanol using a dielectric barrier discharge[J]. Chinese Journal of Catalysis,
;2015, 36(3): 274-282.
doi:
10.1016/S1872-2067(14)60239-4
-
The catalytic effect of H2 in the one-step synthesis of ethylene glycol (EG) from methanol dehydrogenation coupling reaction using dielectric barrier discharge (DBD) was studied by in-situ optical emission spectroscopy and online chromatographic analysis. The influence of discharge frequency, methanol and H2 flow rates as well as reaction pressure was investigated systematically. Results show that, in the non-equilibrium plasma produced by DBD, H2 dramatically improved not only the conversion of methanol but also the selectivity for EG. Using the reaction conditions of 300 ℃, 0.1 MPa, input power 11 W, discharge frequency 12.0 kHz, methanol gas flow rate 11.0 mL/min, and H2 flow rate 80-180 mL/min, the reaction of the CH3OH/H2 DBD plasma gave a methanol conversion close to 30% and a selectivity for EG of more than 75%. The change of the EG yield correlated with the intensity of the Hαspectral line. H atoms appear to be the catalytically active species in the reaction. In the DBD plasma, the stable ground state H2 molecule undergoes cumulative collision excitation with electrons before transitioning from higher energy excited states to the first excited state. The spontaneous dissociation of the first excited state H2 molecules generates the catalytically ac-tive H atom. The discharge reaction condition affects the catalytic performance of H2 by influencing the dissociation of H2 molecules into H atoms. The catalytic effect of H2 exhibited in the non-equilibrium plasma may be a new opportunity for the synthesis of chemicals.
-
-
-
[1]
[1] Yue H R, Zhao Y J, Ma X B, Gong J L. Chem Soc Rev, 2012, 41: 4218
-
[2]
[2] Wen C, Li F Q, Cui Y Y, Dai W L, Fan K N. Catal Today, 2014, 233: 117
-
[3]
[3] Ma X B, Chi H W, Yue H R, Zhao Y J, Xu Y, Lü J, Wang S P, Gong J L. AIChE J, 2013, 59: 2530
-
[4]
[4] Song H Y, Jin R H, Kang M R, Chen J. Chin J Catal (宋河远, 靳荣华, 康美荣, 陈静. 催化学报), 2013, 34: 1035
-
[5]
[5] Chen Q L, Yang W M, Teng J W. Chin J Catal (陈庆龄, 杨为民, 腾加伟. 催化学报), 2013, 34: 217
-
[6]
[6] Zhang J, Yuan Q C, Zhang J L, Li T, Guo H C. Chem Commun, 2013, 49: 10106
-
[7]
[7] Bauschlicher C W J, Langhoff S R, Walch S P. J Chem Phys, 1992, 96: 450
-
[8]
[8] Futamura S, Kabashima H. IEEE Trans Ind Appl, 2004, 40: 1459
-
[9]
[9] Yan Z C, Li C, Lin W H. Int J Hydrog Energy, 2009, 34: 48
-
[10]
[10] Burlica R, Shih K Y, Hnatiuc B, Locke B R. Ind Eng Chem Res, 2011, 50: 9466
-
[11]
[11] Rico V J, Hueso J L, Cotrino J, Gallardo V, Sarmiento B, Brey J J, Gonzalez-Elipe A R. Chem Commun, 2009: 6192
-
[12]
[12] Rico V J, Hueso J L, Cotrino J, Gonzalez- Elipe A R. J Phys Chem A, 2010, 114: 4009
-
[13]
[13] Wang B W, Zhang X, Bai H Y, Lü Y J, Hu S H. Front Chem Sci Eng, 2011, 5: 209
-
[14]
[14] Lü Y J, Yan W J, Hu S H, Wang B W. J Fuel Chem Technol (吕一军, 闫文娟, 胡爽慧, 王保伟. 燃料化学学报), 2012, 40: 698
-
[15]
[15] Wang Y F, You Y S, Tsai C H, Wang L C. Int J Hydrog Energy, 2010, 35: 9637
-
[16]
[16] Lee D H, Kim T. Int J Hydrog Energy, 2013, 38: 6039
-
[17]
[17] Bundaleska N, Tsyganov D, Saavedra R, Tatarova E, Dias F M, Ferreira C M. Int J Hydrog Energy, 2013, 38: 9145
-
[18]
[18] Li H Q, Zou J J, Zhang Y P, Liu C J. J Chem Ind Eng (China) (李慧青, 邹吉军, 张月萍, 刘昌俊. 化工学报), 2004, 55: 1989
-
[19]
[19] Li H Q, Zou J J, Zhang Y P, Liu C J. Chem Lett, 2004, 33: 744
-
[20]
[20] Fantz U, Schalk B, Behringer K. New J Phys, 2000, 2: 71
-
[21]
[21] Petrovic Z L, Phelps A V. Phys Rev E, 2009, 80: 016408/1
-
[22]
[22] Worsley M A, Bent S F, Fuller N C M, Dalton T. J Appl Phys, 2006, 100: 083301/1
-
[23]
[23] Liu X M, Johnson P V, Malone C P, Young J A, Kanik I, Shemansky D E. Astrophys J, 2010,716: 701
-
[24]
[24] Lendvay G, Berces T, Marta F. J Phys Chem A, 1997, 101: 1588
-
[25]
[25] Chuang Y Y, Radhakrishnan M L, Fast P L, Cramer C J, Truhlar D G. J Phys Chem A, 1999, 103: 4893
-
[26]
[26] Han Y, Wang J G, Cheng D G, Liu C J. Ind Eng Chem Res, 2006, 45: 3460
-
[27]
[27] Horacek J, Cizek M, Houfek K, Kolorenc P, Domcke W. Phys Rev A, 2006, 73: 022701/1
-
[1]
-
-
-
[1]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[2]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[3]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[4]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[5]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[6]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[7]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[8]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[9]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[10]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[11]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
-
[12]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[13]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[14]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[15]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[16]
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
-
[17]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
-
[18]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
-
[19]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[20]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[1]
Metrics
- PDF Downloads(219)
- Abstract views(524)
- HTML views(26)