Citation: Jing Zhang, Teng Li, Dongjiang Wang, Jialiang Zhang, Hongchen Guo. The catalytic effect of H2 in the dehydrogenation coupling production of ethylene glycol from methanol using a dielectric barrier discharge[J]. Chinese Journal of Catalysis, ;2015, 36(3): 274-282. doi: 10.1016/S1872-2067(14)60239-4 shu

The catalytic effect of H2 in the dehydrogenation coupling production of ethylene glycol from methanol using a dielectric barrier discharge

  • Corresponding author: Hongchen Guo, 
  • Received Date: 17 August 2014
    Available Online: 12 October 2014

  • The catalytic effect of H2 in the one-step synthesis of ethylene glycol (EG) from methanol dehydrogenation coupling reaction using dielectric barrier discharge (DBD) was studied by in-situ optical emission spectroscopy and online chromatographic analysis. The influence of discharge frequency, methanol and H2 flow rates as well as reaction pressure was investigated systematically. Results show that, in the non-equilibrium plasma produced by DBD, H2 dramatically improved not only the conversion of methanol but also the selectivity for EG. Using the reaction conditions of 300 ℃, 0.1 MPa, input power 11 W, discharge frequency 12.0 kHz, methanol gas flow rate 11.0 mL/min, and H2 flow rate 80-180 mL/min, the reaction of the CH3OH/H2 DBD plasma gave a methanol conversion close to 30% and a selectivity for EG of more than 75%. The change of the EG yield correlated with the intensity of the Hαspectral line. H atoms appear to be the catalytically active species in the reaction. In the DBD plasma, the stable ground state H2 molecule undergoes cumulative collision excitation with electrons before transitioning from higher energy excited states to the first excited state. The spontaneous dissociation of the first excited state H2 molecules generates the catalytically ac-tive H atom. The discharge reaction condition affects the catalytic performance of H2 by influencing the dissociation of H2 molecules into H atoms. The catalytic effect of H2 exhibited in the non-equilibrium plasma may be a new opportunity for the synthesis of chemicals.
  • 加载中
    1. [1]

      [1] Yue H R, Zhao Y J, Ma X B, Gong J L. Chem Soc Rev, 2012, 41: 4218

    2. [2]

      [2] Wen C, Li F Q, Cui Y Y, Dai W L, Fan K N. Catal Today, 2014, 233: 117

    3. [3]

      [3] Ma X B, Chi H W, Yue H R, Zhao Y J, Xu Y, Lü J, Wang S P, Gong J L. AIChE J, 2013, 59: 2530

    4. [4]

      [4] Song H Y, Jin R H, Kang M R, Chen J. Chin J Catal (宋河远, 靳荣华, 康美荣, 陈静. 催化学报), 2013, 34: 1035

    5. [5]

      [5] Chen Q L, Yang W M, Teng J W. Chin J Catal (陈庆龄, 杨为民, 腾加伟. 催化学报), 2013, 34: 217

    6. [6]

      [6] Zhang J, Yuan Q C, Zhang J L, Li T, Guo H C. Chem Commun, 2013, 49: 10106

    7. [7]

      [7] Bauschlicher C W J, Langhoff S R, Walch S P. J Chem Phys, 1992, 96: 450

    8. [8]

      [8] Futamura S, Kabashima H. IEEE Trans Ind Appl, 2004, 40: 1459

    9. [9]

      [9] Yan Z C, Li C, Lin W H. Int J Hydrog Energy, 2009, 34: 48

    10. [10]

      [10] Burlica R, Shih K Y, Hnatiuc B, Locke B R. Ind Eng Chem Res, 2011, 50: 9466

    11. [11]

      [11] Rico V J, Hueso J L, Cotrino J, Gallardo V, Sarmiento B, Brey J J, Gonzalez-Elipe A R. Chem Commun, 2009: 6192

    12. [12]

      [12] Rico V J, Hueso J L, Cotrino J, Gonzalez- Elipe A R. J Phys Chem A, 2010, 114: 4009

    13. [13]

      [13] Wang B W, Zhang X, Bai H Y, Lü Y J, Hu S H. Front Chem Sci Eng, 2011, 5: 209

    14. [14]

      [14] Lü Y J, Yan W J, Hu S H, Wang B W. J Fuel Chem Technol (吕一军, 闫文娟, 胡爽慧, 王保伟. 燃料化学学报), 2012, 40: 698

    15. [15]

      [15] Wang Y F, You Y S, Tsai C H, Wang L C. Int J Hydrog Energy, 2010, 35: 9637

    16. [16]

      [16] Lee D H, Kim T. Int J Hydrog Energy, 2013, 38: 6039

    17. [17]

      [17] Bundaleska N, Tsyganov D, Saavedra R, Tatarova E, Dias F M, Ferreira C M. Int J Hydrog Energy, 2013, 38: 9145

    18. [18]

      [18] Li H Q, Zou J J, Zhang Y P, Liu C J. J Chem Ind Eng (China) (李慧青, 邹吉军, 张月萍, 刘昌俊. 化工学报), 2004, 55: 1989

    19. [19]

      [19] Li H Q, Zou J J, Zhang Y P, Liu C J. Chem Lett, 2004, 33: 744

    20. [20]

      [20] Fantz U, Schalk B, Behringer K. New J Phys, 2000, 2: 71

    21. [21]

      [21] Petrovic Z L, Phelps A V. Phys Rev E, 2009, 80: 016408/1

    22. [22]

      [22] Worsley M A, Bent S F, Fuller N C M, Dalton T. J Appl Phys, 2006, 100: 083301/1

    23. [23]

      [23] Liu X M, Johnson P V, Malone C P, Young J A, Kanik I, Shemansky D E. Astrophys J, 2010,716: 701

    24. [24]

      [24] Lendvay G, Berces T, Marta F. J Phys Chem A, 1997, 101: 1588

    25. [25]

      [25] Chuang Y Y, Radhakrishnan M L, Fast P L, Cramer C J, Truhlar D G. J Phys Chem A, 1999, 103: 4893

    26. [26]

      [26] Han Y, Wang J G, Cheng D G, Liu C J. Ind Eng Chem Res, 2006, 45: 3460

    27. [27]

      [27] Horacek J, Cizek M, Houfek K, Kolorenc P, Domcke W. Phys Rev A, 2006, 73: 022701/1

  • 加载中
    1. [1]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    2. [2]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    3. [3]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    4. [4]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    6. [6]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    8. [8]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    9. [9]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    10. [10]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    11. [11]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    13. [13]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    14. [14]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    17. [17]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    18. [18]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    19. [19]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(219)
  • Abstract views(561)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return