Citation: Yanjuan Cui. In-situ synthesis of C3N4/CdS composites with enhanced photocatalytic properties[J]. Chinese Journal of Catalysis, ;2015, 36(3): 372-379. doi: 10.1016/S1872-2067(14)60237-0 shu

In-situ synthesis of C3N4/CdS composites with enhanced photocatalytic properties

  • Corresponding author: Yanjuan Cui, 
  • Received Date: 31 August 2014
    Available Online: 8 October 2014

    Fund Project: 江苏省自然科学基金(BK20140507). (BK20140507)

  • A hybrid semiconductor composed of a carbon nitride/cadmium sulfide nanocomposite (C3N4/CdS) was synthesized by a template-free one-step calcination route at high temperature using ammonium thiocyanate and cadmium chloride as starting materials. The crystal structure, composition and morphology of the hybrid samples were studied by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. The photocatalytic degradation of Rhodamine B as a model compound was carried out to evaluate the photocatalytic activity of the nanocomposites under visible light irradiation. Hexagonal CdS nanocrystals were uniformly distributed in the bulk C3N4. After coupling with CdS the basic C3N4 structure was mostly unchanged. The visible light absorption properties of the hybrid materials were enhanced. The as-prepared C3N4/CdS hybrid photocatalyst exhibited superior degradation performance under visible light irradiation compared with pure C3N4. The well-matched band energy improved the transfer efficiency of the photoinduced carriers and this was responsible for the enhanced photocatalytic activity and stability of the hybrid photocatalysts.
  • 加载中
    1. [1]

      [1] Wang X C, Maeda K, Chen X F, TakaNabe K, Domen K, Hou Y D, Fu X Z, Antonietti M. J Am Chem Soc, 2009, 131: 1680

    2. [2]

      [2] Fischer A, Antonietti M, Thomas A. Adv Mater, 2007, 19: 264

    3. [3]

      [3] Kim M, Hwang S, Yu J S. J Mater Chem, 2007, 17: 1656

    4. [4]

      [4] Park S S, Chu S W, Xue C F, Zhao D Y, Ha C S. J Mater Chem, 2011, 21: 10801

    5. [5]

      [5] Lee E Z, Jun Y S, Hong W H, Thomas A, Jin M M. Angew Chem Int Ed, 2010, 49: 9706

    6. [6]

      [6] Goettmann F, Fischer A, Antonietti M, Thomas A. Angew Chem Int Ed, 2006, 45: 4467

    7. [7]

      [7] Wang Y, Wang X C, Antonietti M. Angew Chem Int Ed,2012, 51: 68

    8. [8]

      [8] Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z. Energy Environ Sci, 2012, 5: 6717

    9. [9]

      [9] Zhang J S, Grzelczak M, Hou Y D, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chem Sci, 2012, 3: 443

    10. [10]

      [10] Cao S W, Yu J G. J Phys Chem Lett, 2014, 5: 2101

    11. [11]

      [11] Yan S C, Li Z S, Zou Z G. Langmuir, 2010, 26: 3894

    12. [12]

      [12] Lee S C, Lintang H O, Yuliati L. Chem Asian J, 2012, 7: 2139

    13. [13]

      [13] Shalom M, Inal S, Fettkenhauer C, Neher D, Antonietti M. J Am Chem Soc, 2013, 135: 7118

    14. [14]

      [14] Li X H, Antonietti M. Chem Soc Rev, 2013, 42: 6593

    15. [15]

      [15] Ye X J, Cui Y J, Wang X C. ChemSusChem, 2014, 7: 738

    16. [16]

      [16] Zhang Y J, Mori T, Ye J H, Antoniett M. J Am Chem Soc, 2010, 132: 6294

    17. [17]

      [17] Wang W J, Yu J C, Xia D H, Wong P K, Li Y C. Environ Sci Technol, 2013, 47: 8724

    18. [18]

      [18] Pan C S, Xu J, Wang Y J, Li D, Zhu Y F. Adv Funct Mater, 2012, 22: 1518

    19. [19]

      [19] Yu J G, Wang S H, Low J X, Xiao W. Phys Chem Chem Phys, 2013, 15: 16883

    20. [20]

      [20] Sun J X, Yuan Y P, Qiu L G, Jiang X, Xie A J, Shen Y H, Zhu J F. Dalton Trans, 2012, 41: 6756

    21. [21]

      [21] Fu J, Tian Y L, Chang B B, Xi F N, Dong X P. J Mater Chem, 2012, 22: 21159

    22. [22]

      [22] Shen K, Gondal M A, Siddique R G, Shi S, Wang S Q, Sun J B, Xu Q Y. Chin J Catal(沈凯, Gondal M A, Siddique R G, 施珊, 王斯琦, 孙江波, 徐庆宇. 催化学报), 2014, 35: 78

    23. [23]

      [23] Hu Y, Gao X H, Yu L, Wang Y R, Ning J Q, Xu S J, Lou X W. Angew Chem Int Ed, 2013, 52: 5636

    24. [24]

      [24] Hirai T, Bando Y, Komasawa I. J Phys Chem B, 2002, 106: 8967

    25. [25]

      [25] Tang Z R, Yin X, Zhang Y H, Xu Y J. Inorg Chem, 2013, 52: 11758

    26. [26]

      [26] Zong X, Wu G P, Yan H J, Ma G J, Shi J Y, Wen F Y, Wang L, Li C. J Phys Chem C, 2010, 114: 1963

    27. [27]

      [27] Ge L, Zuo F, Liu J K, Ma Q, Wang C, Sun D Z, Bartels L, Feng P Y. J Phys Chem C, 2012, 116: 13708

    28. [28]

      [28] Fu J, Chang B B, Tian Y L, Xi F N, Dong X P. J Mater Chem A, 2013, 1: 3083

    29. [29]

      [29] Cui Y J, Zhang J S, Zhang G G, Huang J H, Liu P, Antonietti M, Wang X C. J Mater Chem, 2011, 21: 13032

    30. [30]

      [30] Cui Y J, Huang J H, Fu X Z, Wang X C. Catal Sci Technol, 2012, 2: 1396

    31. [31]

      [31] Lotsch B V, Schnick W. Chem Mater, 2006, 18: 1891

    32. [32]

      [32] Lyth S M, Nabae Y, Moriya S, Kuroki S, Kakimoto M, Ozaki J, Miyata S. J Phys Chem C, 2009, 113: 20148

    33. [33]

      [33] Liu J, Zhang T, Wang Z, Dawson G, Chen W. J Mater Chem, 2011, 21: 14398

    34. [34]

      [34] Foy D, Demazeau G, Florian P, Massiot D, Labrugere C, Goglio G. J Solid State Chem, 2009, 182: 165

    35. [35]

      [35] Cao S W, Yuan Y P, Fang J, Shahjamali M M, Boey F Y C, Barber J, Loo S C J, Xun C. Int J Hydrogen Energy, 2013, 38, 1258

    36. [36]

      [36] Bao N Z, Shen L M, Takata T, Domen K. Chem Mater, 2008, 20: 110

    37. [37]

      [37] Jiang D W, Zhou T S, Sun Q, Yu Y Y, Shi G Y, Jin L T. Chin J Chem, 2011, 29: 2505

    38. [38]

      [38] Chen X F, Jun Y S, Takanabe K, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chem Mater, 2009, 21, 4093

    39. [39]

      [39] Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X Z, Antonietti M, Wang X C. Angew Chem Int Ed, 2010, 49: 441

    40. [40]

      [40] Zhang J S, Zhang M W, Sun R Q, Wang X C. Angew Chem Int Ed, 2012, 51: 10145

    41. [41]

      [41] Zhang G G, Zhang M W, Ye X X, Qiu X Q, Lin S, Wang X C. Adv Mater, 2014, 26: 805

    42. [42]

      [42] Cui Y J, Ding Z X, Liu P, Antonietti M, Fu X Z, Wang X C. Phys Chem Chem Phys, 2012, 14: 1455

  • 加载中
    1. [1]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    2. [2]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    3. [3]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    4. [4]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    8. [8]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    12. [12]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    14. [14]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    15. [15]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

Metrics
  • PDF Downloads(193)
  • Abstract views(614)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return