Citation: Weixing Liu, Zhe Zhao, Baofeng Tu, Daan Cui, Dingrong Ou, Mojie Cheng. TiO2-modified La0.6Sr0.4Co0.2Fe0.8O3-δ cathode for intermediate temperature solid oxide fuel cells[J]. Chinese Journal of Catalysis, ;2015, 36(4): 502-508. doi: 10.1016/S1872-2067(14)60235-7 shu

TiO2-modified La0.6Sr0.4Co0.2Fe0.8O3-δ cathode for intermediate temperature solid oxide fuel cells

  • Corresponding author: Mojie Cheng, 
  • Received Date: 18 July 2014
    Available Online: 22 September 2014

    Fund Project: 国家高技术研究发展计划(863计划, 2011AA050704) (863计划, 2011AA050704) 国家重点基础研究发展计划(973计划, 2010CB732302, 2012CB215500) (973计划, 2010CB732302, 2012CB215500) 国家自然科学基金(21376238, 21306189, 51101146). (21376238, 21306189, 51101146)

  • A La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode modified using nanosized TiO2 was direct prepared on the yttria stabilized zirconia (YSZ) electrolyte in an intermediate temperature solid oxide fuel cell. TiO2 prevents reaction between LSCF and YSZ, which would have formed a SrZrO3 phase. The cell with a LSCF-0.25 wt% TiO2 cathode exhibited a current density that was 1.6 times larger than that with a pure LSCF cathode at 0.7 V and 600 ℃. Electrochemical impedance spectra showed the accelerated incorporation of oxygen anions into the YSZ electrolyte with the TiO2-modified LSCF cathode. The improvement was attributed to the suppressed formation of a non-conductive SrZrO3 layer at the cathode/electrolyte interface.
  • 加载中
    1. [1]

      [1] Stambouli A B, Traversa E. Renew Sustain Energy Rev, 2002, 6: 433

    2. [2]

      [2] Tsai T, Barnett S A. Solid State Ionics, 1997, 93: 207

    3. [3]

      [3] Jiang Y, Virkar A V, Zhao F. J Electrochem Soc, 2001, 148: A1091

    4. [4]

      [4] Mai A, Haanappel V A C, Uhlenbruck S, Tietz F, Stöver D. Solid State Ionics, 2005, 176: 1341

    5. [5]

      [5] Mai A, Becker M, Assenmacher W, Tietz F, Hathiramani D, Ivers-Tiffée E, Stöver D, Mader W. Solid State Ionics, 2006, 177: 1965

    6. [6]

      [6] Jordan N, Assenmacher W, Uhlenbruck S, Haanappel V A C, Buchkremer H P, Stöver D, Mader W. Solid State Ionics, 2008, 179: 919

    7. [7]

      [7] Constantin G, Rossignol C, Briois P, Billard A, Dessemond L, Djurado E. Solid State Ionics, 2013, 249-250: 98

    8. [8]

      [8] Wu W M, Liu Z B, Zhao Z, Zhang X M, Ou D R, Tu B F, Cui D A, Cheng M J. Chin J Catal (武卫明, 刘中波, 赵哲, 张小敏, 区定容, 涂宝峰, 崔大安, 程谟杰. 催化学报), 2014, 35: 1376

    9. [9]

      [9] Chen J, Liang F L, Liu L N, Jiang S P, Chi B, Pu J, Li J. J Power Sources, 2008, 183: 586

    10. [10]

      [10] Chen D J, Wang F C, Shao Z P. Int J Hydrogen Energy, 2012, 37: 11946

    11. [11]

      [11] Bannier E, Darut G, Sánchez E, Denoirjean A, Bordes M C, Salvador M D, Rayón E, Ageorges H. Surf Coatings Technol, 2011, 206: 378

    12. [12]

      [12] Erdogan D A, Polat M, Garifullin R, Guler M O, Ozensoy E. Appl Surf Sci, 2014, 308: 50

    13. [13]

      [13] Liu Y P, Deng D G, Xu S Q, Zhao S L, Wang H P, Huang L H, Hua Y J. J Non-Cryst Solids, 2013, 360: 26

    14. [14]

      [14] Khan M A, Raza R, Lima R B, Chaudhry M A, Ahmed E, Khalid N R, Abbas G, Zhu B, Nasir N. Ceram Int, 2014, 40: 9775

    15. [15]

      [15] Zhao Z, Liu L, Zhang X M, Wu W M, Tu B F, Ou D R, Cheng M J. J Power Sources, 2013, 222: 542

    16. [16]

      [16] Simner S P, Anderson M D, Engelhard M H, Stevenson J W. Electrochem Solid-State Lett, 2006, 9: A478

    17. [17]

      [17] Ding H P, Virkar A V, Liu M L, Liu F. Phys Chem Chem Phys, 2013, 15: 489

    18. [18]

      [18] Zhao Z, Liu L, Zhang X M, Wu W M, Tu B F, Cui D A, Ou D R, Cheng M J. Int J Hydrogen Energy, 2013, 38: 15361

    19. [19]

      [19] Finsterbusch M, Lussier A, Schaefer J A, Idzerda Y U. Solid State Ionics, 2012, 212: 77

    20. [20]

      [20] Crumlin E J, Mutoro E, Liu Z, Grass M E, Biegalski M D, Lee Y L, Morgan D, Christen H M, Bluhm H, Yang S H. Energy Environ Sci, 2012, 5: 6081

    21. [21]

      [21] Roy P K, Bera J. Mater Res Bull, 2005, 40: 599

    22. [22]

      [22] Sirikanda N, Matsumoto H, Ishihara T. Solid State Ionics, 2010, 181: 315

    23. [23]

      [23] Liu B, Muroyama H, Matsui T, Tomida K, Kabata T, Eguchi K. J Electrochem Soc, 2010, 157: B1858

    24. [24]

      [2] Kournoutis V Ch, Tietz F, Bebelis S. Fuel Cells, 2009, 9: 852

  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    11. [11]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    12. [12]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    13. [13]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    14. [14]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    15. [15]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    16. [16]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(398)
  • Abstract views(710)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return