Citation: Xiaotong Wang, Yanmin Li, Xin Liu, Shanmin Gao, Baibiao Huang, Ying Dai. Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity[J]. Chinese Journal of Catalysis, ;2015, 36(3): 389-399. doi: 10.1016/S1872-2067(14)60234-5 shu

Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity

  • Corresponding author: Yanmin Li,  Shanmin Gao, 
  • Received Date: 1 September 2014
    Available Online: 29 September 2014

    Fund Project: 国家重点基础研究发展计划(973计划, 2013CB632401) (973计划, 2013CB632401) 山东省自然科学基金重点项目(ZR2013EMZ001) (ZR2013EMZ001) 山东省高等学校科技计划(J12LA01). (J12LA01)

  • Ti3+ self-doped TiO2 nanoparticles were synthesized by hydrothermal treatment of a gel precursor obtained using TiH2 as the Ti source and H2O2 as oxidant. The effects of different states of gel and hydrothermal treatment time on the properties of the samples were studied. The structure, crystallinity, morphology, and optical properties of the nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microcopy, and UV-visible diffuse reflectance spectroscopy. The chemical states of Ti and O were confirmed by X-ray photoelectron spectroscopy and electron spin resonance spectroscopy. Methylene blue (MB) solutions were used as simulated wastewater to evaluate the visible-light photocatalytic activity of the samples. The samples exhibited strong absorption in the visible light region compared with pure TiO2 and an excellent performance in the photocatalytic degradation of MB. When yellow gel was used as the precursor, the sample obtained after hydrothermal treatment at 160 ℃ for 24 h exhibited the best visible light photocatalytic activity with a reaction rate constant of 0.0439 min-1, 18.3 times that of pure TiO2. The samples also showed excellent cyclic stability of the photocatalytic activity.
  • 加载中
    1. [1]

      [1] Thompson T L, Yates J T Jr. Chem Rev, 2006, 106: 4428

    2. [2]

      [2] Xu P, Xu T, Lu J, Gao S M, Hosmane N S, Huang B B, Dai Y, Wang Y B. Energ Environ Sci, 2010, 3: 1128

    3. [3]

      [3] Li H Y, Liu J F, Qian J J, Li Q Y, Yang J J. Chin J Catal(李海燕, 刘金凤, 钱俊杰, 李秋叶, 杨建军. 催化学报), 2014, 35: 1578

    4. [4]

      [4] Chen Y C, Pu Y C, Hsu Y J. J Phys Chem C, 2012, 116: 2967

    5. [5]

      [5] Huang Y, Li K X, Yan L S, Dai Y H, Huang Z M, Xue K P, Guo H Q, Xiong J J. Chin J Catal (黄燕, 李可心, 颜流水, 戴玉华, 黄智敏, 薛昆鹏, 郭会琴, 熊晶晶. 催化学报), 2012, 33: 308

    6. [6]

      [6] Kochuveedu S T, Kim D P, Kim D H. J Phys Chem C, 2012, 116: 2500

    7. [7]

      [7] Singh S K, Chauhan R, Singh B, Diwan K, Kociok-Köhn G, Bahadur L, Singh N. Dalton Trans, 2012, 41: 1373

    8. [8]

      [8] Hoffman M R, Martin S T, Choi W, Bahnemann D W. Chem Rev, 1995, 95: 69

    9. [9]

      [9] Tachikawa T, Fujitsuka M, Majima T. J Phys Chem C, 2007, 111: 5259

    10. [10]

      [10] Valentin C D, Pacchioni G, Selloni A. J Phys Chem C, 2009, 113: 20543

    11. [11]

      [11] Kuznetsov A I, Kameneva O, Alexandrov A, Bityurin N, Chhor K, Kanaev A. J Phys Chem B, 2006, 110: 435

    12. [12]

      [12] Lira E, Wendt S, Huo P P, Hansen J, Streber R, Porsgaard S, Wei Y Y, Bechstein R, Lægsgaard E, Besenbacher F. J Am Chem Soc, 2011, 133: 6529

    13. [13]

      [13] Teleki A, Pratsinis S E. Phys Chem Chem Phys, 2009, 11: 3742

    14. [14]

      [14] Komaguchi K, Maruoka T, Nakano H, Imae I, Ooyama Y, Harima Y. J Phys Chem C, 2010, 114: 1240

    15. [15]

      [15] Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. J Am Chem Soc, 2010, 132: 11856

    16. [16]

      [16] Wang W, Lu C H, Ni Y R, Su M X, Xu Z Z. Appl Catal B, 2012, 127: 28

    17. [17]

      [17] Liu Y C, Xing M Y, Zhang J L. Chin J Catal(刘允昌, 邢明阳, 张金龙. 催化学报), 2014, 35: 1511

    18. [18]

      [18] Xing M Y, Fang W Z, Nasir M, Ma Y F, Zhang J L, Anpo M. J Catal, 2013, 297: 236

    19. [19]

      [19] Fang W Z, Xing M Y, Zhang J L. Appl Catal B, 2014, 160: 240

    20. [20]

      [20] Liu X, Xu H, Grabstanowicz L R, Gao S M, Lou Z Z, Wang W J, Huang B B, Dai Y, Xu T. Catal Today, 2014, 225: 80

    21. [21]

      [21] Grabstanowicz L G, Gao S M, Li T, Rickard R M, Rajh T, Liu D J, Xu T. Inorg Chem, 2013, 52: 3884

    22. [22]

      [22] Liu X, Gao S M, Xu H, Lou Z Z, Wang W J, Huang B B, Dai Y. Nanoscale, 2013, 5: 1870

    23. [23]

      [23] Sandim H R Z, Morante B V, Suzuki P A. Mater Res, 2005, 8: 293

    24. [24]

      [24] Natoli A, Cabeza A, De La Torre A G, Aranda M A G, Santacruz I. J Am Ceram Soc, 2012, 95: 502

    25. [25]

      [25] Yu F H, Wang J H, Zhao K F, Yin J, Jin C Z, Liu X. Chin J Catal(于福海, 王军虎, 赵昆峰, 尹杰, 金长子, 刘忻. 催化学报), 2013, 34: 1216

    26. [26]

      [26] Etacheri V, Seery M K, Hinder S J, Pillai S C. Chem Mater, 2010, 22: 3843

    27. [27]

      [27] Asiltürk M, Sayílkan F, Arpaç E. J Photochem Photobiol A, 2009, 203: 64

    28. [28]

      [28] Xing M Y, Zhang J L, Chen F, Tian B Z. Chem Commun, 2011, 47: 4947

    29. [29]

      [29] Vijay M, Ananthapadmanabhan P V, Sreekumar K P. Appl Surf Sci, 2009, 255: 9316

    30. [30]

      [30] Zou J, Gao J C, Wang Y. J Photochem Photobiol A, 2009, 202: 128

    31. [31]

      [31] Joung S K, Amemiya T, Murabayashi M, Itoh K. Appl Catal A, 2006, 312: 20

    32. [32]

      [32] Uno M, Kosuga A, Okui M, Horisaka K, Yamanaka S. J Alloys Compd, 2005, 400: 270

    33. [33]

      [33] Szczepankiewicz S H, Moss J A, Hoffmann M R. J Phys Chem B, 2002, 106: 2922

    34. [34]

      [34] Liu G, Yan X X, Chen Z G, Wang X W, Wang L Z, Lu G Q, Cheng H H. J Mater Chem, 2009, 19: 6590

    35. [35]

      [35] Suriye K, Jongsomjit B, Satayaprasert C, Praserthdam P. Appl Surf Sci, 2008, 255: 2759

    36. [36]

      [36] Suriye K, Praserthdam P, Jongsomjit B. Appl Surf Sci, 2007, 253: 3849

    37. [37]

      [37] Kong M, Li Y Z, Chen X, Tian T T, Fang P F, Zhang F, Zhao X J. J Am Chem Soc, 2011, 133: 16414

    38. [38]

      [38] Su J, Zou X X, Zou Y C, Li G D, Wang P P, Chen J S. Inorg Chem, 2013, 52: 5924

    39. [39]

      [39] Cronemeyer D C. Phys Rev, 1959, 113: 1222

    40. [40]

      [40] Heller A, Degani Y, Johnson D W, Gallagher P K. J Phys Chem, 1987, 91: 5987

  • 加载中
    1. [1]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    2. [2]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    5. [5]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    6. [6]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    19. [19]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(230)
  • Abstract views(786)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return