Citation: Juanjuan Shi, Renfeng Nie, Mengyuan Zhang, Mengsi Zhao, Zhaoyin Hou. Microwave-assisted fast fabrication of a nanosized Pt3Co alloy on reduced graphene oxides[J]. Chinese Journal of Catalysis, ;2014, 35(12): 2029-2037. doi: 10.1016/S1872-2067(14)60232-1 shu

Microwave-assisted fast fabrication of a nanosized Pt3Co alloy on reduced graphene oxides

  • Corresponding author: Zhaoyin Hou, 
  • Received Date: 30 July 2014
    Available Online: 30 September 2014

    Fund Project: 国家自然科学基金(21473155, 21273198, 21073159) (21473155, 21273198, 21073159) 浙江省自然科学基金(L12B03001). (L12B03001)

  • Ultrafine and homogenously dispersed Pt3Co alloy nanoparticles were fabricated on reduced graphene oxide (RGO) in a few minutes under microwave irradiation. Characterization results confirmed that microwave irradiation was important for higher metal utilization, the easy control of alloy composition, improved dispersion of the Pt3Co particles and minimizing the re-graphitization of the parent RGO by comparison with conventional solvent-thermal and impregnation methods. This Pt3Co/RGO-MW catalyst was extremely active and selective during the hydrogenation of cinnamaldehyde to cinnamyl alcohol. The calculated specific activity of each Pt atom in the Pt3Co/RGO-MW at 70 ℃ was 23.8 min-1.
  • 加载中
    1. [1]

      [1] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316: 732

    2. [2]

      [2] Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Nat Mater, 2007, 6: 241

    3. [3]

      [3] Ghosh T, Leonard B M, Zhou Q, DiSalvo F J. Chem Mater, 2010, 22: 2190

    4. [4]

      [4] Jusys Z, Behm R J. J Phys Chem B, 2001, 105: 10874

    5. [5]

      [5] Lee A F, Gee J J, Theyers H J. Green Chem, 2000, 2: 279

    6. [6]

      [6] Nie R F, Liang D, Shen L, Gao J, Chen P, Hou Z Y. Appl Catal B, 2012, 127: 212

    7. [7]

      [7] Liang D, Gao J, Sun H, Chen P, Hou Z Y, Zheng X M. Appl Catal B, 2011, 106: 423

    8. [8]

      [8] Tsang S C, Cailuo N, Oduro W, Kong A T S, Clifton L, Yu K M K, Thiebaut B, Cookson J, Bishop P. ACS Nano, 2008, 2: 2547

    9. [9]

      [9] Shi J J, Nie R F, Chen P, Hou Z Y. Catal Commun, 2013, 41: 101

    10. [10]

      [10] Vu H, Gonçalves F, Philippe R, Lamouroux E, Corrias M, Kihn Y, Plee D, Kalck P, Serp P. J Catal, 2006, 240: 18

    11. [11]

      [11] Yang H Z, Zhang J, Sun K, Zou S Z, Fang J Y. Angew Chem Int Ed, 2010, 49: 6848

    12. [12]

      [12] Choi S I, Choi R, Han S W, Park J T. Chem-Eur J, 2011, 17: 12280

    13. [13]

      [13] Wang C, Wang G F, van der Vliet D, Chang K C, Markovic N M, Stamenkovic V R. Phys Chem Chem Phys, 2010, 12: 6933

    14. [14]

      [14] Callejas-Tovar R, Liao W T, de la Hoz J M M, Balbuena P B. J Phys Chem C, 2011, 115: 4104

    15. [15]

      [15] Wu B H, Huang H Q, Yang J, Zheng N F, Fu G. Angew Chem Int Ed, 2012, 51: 3440

    16. [16]

      [16] Kwon S G, Krylova G, Sumer A, Schwartz M M, Bunel E E, Marshall C L, Chattopadhyay S, Lee B, Jellinek J, Shevchenko E V. Nano Lett, 2012, 12: 5382

    17. [17]

      [17] Shao Y Y, Zhang S, Wang C M, Nie Z M, Liu J, Wang Y, Lin Y H. J Power Sources, 2010, 195: 4600

    18. [18]

      [18] Guo S J, Dong S J, Wang E K. ACS Nano, 2010, 4: 547

    19. [19]

      [19] Kundu P, Nethravathi C, Deshpande P A, Rajamathi M, Madras G, Ravishankar N. Chem Mater, 2011, 23: 2772

    20. [20]

      [20] Bock C, Paquet C, Couillard M, Botton G A, MacDougall B R. J Am Chem Soc, 2004,126: 8028

    21. [21]

      [21] Santori G F, Casella M L, Ferretti O A. J Mol Catal A, 2002, 186: 223

    22. [22]

      [22] Yue Q L, Zhang K, Chen X M, Wang L, Zhao J S, Liu J F, Jia J B. Chem Commun, 2010, 46: 3369

    23. [23]

      [23] Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. J Am Chem Soc, 2009, 131: 8262

    24. [24]

      [24] Nie R F, Wang J H, Wang L N, Qin Y, Chen P, Hou Z Y. Carbon, 2012, 50: 586

    25. [25]

      [25] Siamaki A R, Khder A E R S, Abdelsayed V, El-Shall M S, Gupton B F. J Catal, 2011, 279: 1

    26. [26]

      [26] Zhao Y C, Zhan L, Tian J N, Nie S L, Ning Z. Electrochim Acta, 2011, 56: 1967

    27. [27]

      [27] Verma S, Mungse H P, Kumar N, Choudhary S, Jain S L, Sain B, Khatri O P. Chem Commun, 2011, 47: 12673

    28. [28]

      [28] Allen M J, Tung V C, Kaner R B. Chem Rev, 2010, 110: 132

    29. [29]

      [29] Si Y C, Samulski E T. Chem Mater, 2008, 20: 6792

    30. [30]

      [30] Chen S Q, Wang Y. J Mater Chem, 2010, 20: 9735

    31. [31]

      [31] Hu H, Zhao Z B, Zhou Q, Gogotsi Y, Qiu J S. Carbon, 2012, 50: 3267

    32. [32]

      [32] Knupp S L, Li W Z, Paschos O, Murray T M, Snyder J, Haldar P. Carbon, 2008, 46: 1276

    33. [33]

      [33] Jiang S J, Ma Y W, Jian G Q, Tao H S, Wang X Z, Fan Y N, Lu Y N, Hu Z, Chen Y. Adv Mater, 2009, 21: 4953

    34. [34]

      [34] Yu W Y, Tu W X, Liu H F. Langmuir, 1999, 15: 6

    35. [35]

      [35] Hummers W S Jr, Offemann R E. J Am Chem Soc, 1958, 80: 1339

    36. [36]

      [36] Fei L F, Sun T Y, Lu W, An X Q, Hu Z F, Yu J C, Zheng R K, Li X M, Chan H L W, Wang Y. Chem Commun, 2014, 50: 826

    37. [37]

      [37] Li X L, Zhang G Y, Bai X D, Sun X M, Wang X R, Wang E G, Dai H J. Nat Nanotechnol, 2008, 3: 538

    38. [38]

      [38] Chen J L, Yan X P. J Mater Chem, 2010, 20: 4328

    39. [39]

      [39] Pimenta M A, Dresselhaus G, Dresselhaus M S, Cançado L G, Jorio A, Saito R. Phys Chem Chem Phys, 2007, 9: 1276

    40. [40]

      [40] Paredes J I, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón J M D. Langmuir, 2009, 25: 5957

    41. [41]

      [41] Vinayan B P, Ramaprabhu S. Nanoscale, 2013, 5: 5109

    42. [42]

      [42] Liang Y M, Zhang H M, Zhong H X, Zhu X B, Tian Z Q, Xu D Y, Yi B L. J Catal, 2006, 238: 468

    43. [43]

      [43] Gao C L, Liang Y Y, Han M, Xu Z, Zhu J M. J Phys Chem C, 2008, 112: 9272

    44. [44]

      [44] Duong H T, Rigsby M A, Zhou W P, Wieckowski A. J Phys Chem C, 2007, 111: 13460

    45. [45]

      [45] Li Y, Zhu P F, Zhou R X. Appl Surf Sci, 2008, 254: 2609

  • 加载中
    1. [1]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    5. [5]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    6. [6]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    9. [9]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    14. [14]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    15. [15]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

Metrics
  • PDF Downloads(0)
  • Abstract views(581)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return