Citation: Tao Chang, Xiaorui Gao, Li Bian, Xiying Fu, Mingxia Yuan, Huanwang Jing. Coupling of epoxides and carbon dioxide catalyzed by Brönsted acid ionic liquids[J]. Chinese Journal of Catalysis, ;2015, 36(3): 408-413. doi: 10.1016/S1872-2067(14)60227-8 shu

Coupling of epoxides and carbon dioxide catalyzed by Brönsted acid ionic liquids

  • Corresponding author: Huanwang Jing, 
  • Received Date: 11 August 2014
    Available Online: 15 September 2014

    Fund Project: 河北省自然科学基金(B2012402001) (B2012402001) 国家自然科学基金(51202054, 21173106). (51202054, 21173106)

  • A series of Brönsted acid ionic liquids (BAILs) containing a long chain Brönsted acid site in the cationic part and a Lewis basic site in the anionic part were designed, synthesized, and used as catalyst for the coupling of epoxides and carbon dioxide to cyclic carbonates without a co-catalyst or co-solvent. The effects of catalyst structure and other parameters on the catalytic performance were investigated. The long chain 2-(N,N-dimethyldodecylammonium) acetic acid bromide ([(CH2COOH)DMDA]Br) showed high catalytic activity and good reusability. This protocol was expanded to various epoxides, which gave the corresponding cyclic carbonates in good yields. The acidity of the catalyst influenced its catalytic activity.
  • 加载中
    1. [1]

      [1] Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller T E. Energy Environ Sci, 2012, 5: 7281

    2. [2]

      [2] Li L, Zhao N, Wei W, Sun Y H. Fuel, 2013, 108: 112

    3. [3]

      [3] Li H, Bhadury P S, Song B A, Yang S. RSC Adv, 2012, 2: 12525

    4. [4]

      [4] Fan Q J, Liu J H, Chen J, Xia C G. Chin J Catal(樊启佳, 刘建华, 陈静, 夏春谷. 催化学报), 2012, 33: 1435

    5. [5]

      [5] Castro-Osma J A, Lara-Sánchez A, North M, Otero A, Villuendas P. Catal Sci Technol, 2012, 2: 1021

    6. [6]

      [6] Lu X B, Darensbourg D J. Chem Soc Rev, 2012, 41: 1462

    7. [7]

      [7] Ren W M, Wu G P, Lin F, Jiang J Y, Liu C, Luo Y, Lu X B. Chem Sci, 2012, 3: 2094

    8. [8]

      [8] Beattie C, North M. Chem Eur J, 2014, 20: 8182

    9. [9]

      [9] Xie Y, Wang T T, Yang R X, Huang N Y, Zou K, Deng W Q. ChemSusChem, 2014, 7: 2110

    10. [10]

      [10] Iksi S, Aghmiz A, Rivas R, González M D, Cuesta-Aluja L, Castilla J, Orejón A, Guemmout F E, Masdeu-Bultó A M. J Mol Catal A, 2014, 383-384: 143

    11. [11]

      [11] Li B, Zhang L L, Song Y Y, Bai D S, Jing H W. J Mol Catal A, 2012, 363-364: 26

    12. [12]

      [12] Bai D S, Duan S H, Hai L, Jing H W. ChemCatChem, 2012, 4: 1752

    13. [13]

      [13] Ema T, Miyazaki Y, Koyama S, Yano Y, Sakai T. Chem Commun, 2012, 48: 4489

    14. [14]

      [14] Wei R J, Zhang X H, Du B Y, Fan Z Q, Qi G R. J Mol Catal A, 2013, 379: 38

    15. [15]

      [15] Tharun J, Hwang Y, Roshan R, Ahn S, Kathalikkattil A C, Park D W. Catal Sci Technol, 2012, 2: 1674

    16. [16]

      [16] Li C Y, Wu C R, Liu Y C, Ko B T. Chem Commun, 2012, 48: 9628

    17. [17]

      [17] Roeser J, Kailasam K, Thomas A. ChemSusChem, 2012, 5: 1793

    18. [18]

      [18] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. Catal Today, 2014, 233: 92

    19. [19]

      [19] Chen J X, Jin B, Dai W L, Deng S L, Cao L R, Cao Z J, Luo S L, Luo X B, Tu X M, Au C T. Appl Catal A, 2014, 484: 26

    20. [20]

      [20] Yu T, Weiss R G. Green Chem, 2012, 14: 209

    21. [21]

      [21] Gao J, Song Q W, He L N, Liu C, Yang Z Z, Han X, Li X D, Song Q C. Tetrahedron, 2012, 68: 3835

    22. [22]

      [22] He Q, O'Brien J W, Kitselman K A, Tompkins L E, Curtis G C T, Kerton F M. Catal Sci Technol, 2014, 4: 1513

    23. [23]

      [23] Ghazali-Esfahani S, Song H B, Pâunescu E, Bobbink F D, Liu H Z, Fei Z F, Laurenczy G, Bagherzadeh M, Yan N, Dyson P J. Green Chem, 2013, 15: 1584

    24. [24]

      [24] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. J Mol Catal A, 2013, 378: 326

    25. [25]

      [25] Song Q W, He L N, Wang J Q, Yasuda H, Sakakura T. Green Chem, 2013, 15: 110

    26. [26]

      [26] Tharun J, Kim D W, Roshan R, Hwang Y, Park D W. Catal Commun, 2013, 31: 62

    27. [27]

      [27] Wong W L, Lee L Y S, Ho K P, Zhou Z Y, Fan T, Lin Z Y, Wong K Y. Appl Catal A, 2014, 472: 160

    28. [28]

      [28] Wang F, Xu C Z, Li Z, Xia C G, Chen J. J Mol Catal A, 2014, 385: 133

    29. [29]

      [29] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. Appl Catal A, 2014, 470: 183

    30. [30]

      [30] Xiao L F, Sun D, Yue C T, Wu W. J CO2 Utilization, 2014, 6: 1

    31. [31]

      [31] Dai W L, Jin B, Luo S L, Yin S F, Luo X B, Au C T. J CO2 Utilization, 2013, 3-4: 7

    32. [32]

      [32] Sun J, Wang J Q, Cheng W G, Zhang J X, Li X H, Zhang S J, She Y B. Green Chem, 2012, 14: 654

    33. [33]

      [33] Watile R A, Deshmukh K M, Dhake K P, Bhanage B M. Catal Sci Technol,2012, 2: 1051

    34. [34]

      [34] Qu J, Cao C Y, Dou Z F, Liu H, Yu Y, Li P, Song W G. ChemSusChem, 2012, 5: 652

    35. [35]

      [35] Xiao L F, Lü D W, Su D, Wu W, Li H F. J Clean Prod, 2014, 67: 285

    36. [36]

      [36] Han L N, Choi S J, Park M S, Lee S M, Kim Y J, Kim M I, Liu B Y, Park D W. React Kinet Mech Catal, 2012, 106: 25

    37. [37]

      [37] Zhang Y Y, Yin S F, Luo S L, Au C T. Ind Eng Chem Res, 2012, 51: 3951

    38. [38]

      [38] He L Q, Qin S J, Chang T, Sun Y Z, Zhao J Q. Int J Mol Sci, 2014, 15: 8656

    39. [39]

      [39] He L Q, Qin S J, Chang T, Sun Y Z, Gao X R. Catal Sci Technol, 2013, 3: 1102

    40. [40]

      [40] Chang T, He L Q, Bian L, Han H Y, Yuan M X, Gao X R. RSC Adv, 2014, 4: 727

    41. [41]

      [41] Fei Z F, Zhao D B, Geldbach T J, Scopelliti R, Dyson P J. Chem Eur J, 2004, 10: 4886

    42. [42]

      [42] Zhang J L, Han B X, Zhao Y J, Li J S, Hou M Q, Yang G Y. Chem Commun, 2011, 47: 1033

    43. [43]

      [43] Miao C X, Wang J Q, Wu Y, Du Y, He L N. ChemSusChem, 2008, 1: 236

  • 加载中
    1. [1]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    17. [17]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    20. [20]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

Metrics
  • PDF Downloads(248)
  • Abstract views(902)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return