Citation: Lei Pang, Chi Fan, Lina Shao, Junxia Yi, Xing Cai, Jian Wang, Ming Kang, Tao Li. Effect of V2O5/WO3-TiO2 catalyst preparation method on NOx removal from diesel exhaust[J]. Chinese Journal of Catalysis, ;2014, 35(12): 2020-2028. doi: 10.1016/S1872-2067(14)60218-7 shu

Effect of V2O5/WO3-TiO2 catalyst preparation method on NOx removal from diesel exhaust

  • Corresponding author: Tao Li, 
  • Received Date: 20 June 2014
    Available Online: 2 September 2014

  • V2O5/WO3-TiO2 catalysts were prepared by conventional impregnation (VWTi-con) and ultras­ound-assisted impregnation methods (VWTi-HUST). Their catalytic performance was tested for the selective catalytic reduction (SCR) of NO with NH3. The effects of the preparation methods on the catalyst properties were studied. The catalysts were characterized by X-ray diffraction, scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. Both structural investigation and NH3-SCR activity showed that the preparation method had a strong effect on the thermal behavior of the V2O5/WO3-TiO2 catalysts. After a hydrothermal treatment, a significant loss of NO reduction activity was observed for the VWTi-con catalyst, which suffered severe sintering and even formed a rutile VxTi1-xO2 solid solution, while the VWTi-HUST catalyst had the same good hydrothermal stability as a commercial catalyst, indicating that the VWTi-HUST catalyst can be used in a commercial diesel after-treatment system. The ultrasound-assisted impregnation method produced a stronger interaction between the vanadium species and WTi support, which stabilized the vanadium species in the reduced state.
  • 加载中
    1. [1]

      [1] Kašpar J, Fornasiero P, Hickey N. Catal Today, 2003, 77: 419

    2. [2]

      [2] Schultz M G, Diehl T, Brasseur G P, Zittel W. Science, 2003, 302: 624

    3. [3]

      [3] Skalska K, Miller J S, Ledakowicz S. Sci Total Environ, 2010, 408: 3976

    4. [4]

      [4] Nakajima F, Hamada I. Catal Today, 1996, 29: 109

    5. [5]

      [5] Forzatti P. Appl Catal A, 2001, 222: 221

    6. [6]

      [6] Liu Z M, Woo S I. Catal Rev-Sci Eng, 2006, 48: 43

    7. [7]

      [7] Liu F D, Shan W P, Shi X Y, He H. Chem Prog (刘福东, 单文坡, 石晓燕, 贺泓. 化学进展), 2012, 24: 446

    8. [8]

      [8] Zhao Z, Zhang G Z, Liu J, Liang P, Xu J, Duan A J, Jiang G Y, Xu C M. Chin J Catal (赵震, 张桂臻, 刘坚, 梁鹏, 许洁, 段爱军, 姜桂元, 徐春明. 催化学报), 2008, 29: 303

    9. [9]

      [9] Li J H, Chang H Z, Ma L, Hao J M, Yang R T. Catal Today, 2011, 175: 147

    10. [10]

      [10] Kobayashi M, Kuma R, Masaki S, Sugishima N. Appl Catal B, 2005, 60: 173

    11. [11]

      [11] Kröcher O, Elsener M. Appl Catal B, 2008, 77: 215

    12. [12]

      [12] Choo S T, Lee Y G, Nam I S, Ham S W, Lee J B. Appl Catal A, 2000, 200: 177

    13. [13]

      [13] Li M, Altman E I. J Phys Chem C, 2009, 113: 2798

    14. [14]

      [14] Wachs I E. J Catal, 1990, 124: 570

    15. [15]

      [15] Tang F S, Zhuang K, Yang F, Yang L L, Xu B L, Qiu J H, Fan Y N. Chin J Catal (唐富顺, 庄柯, 杨芳, 杨利利, 许波连, 邱金恒, 范以宁. 催化学报), 2012, 33: 933

    16. [16]

      [16] Wachs I E, Weckhuysen B M. Appl Catal A, 1997, 157: 67

    17. [17]

      [17] Xu H D, Fang Z T, Cao Y, Kong S, Lin T, Gong M C, Chen Y Q. Chin J catal (徐海迪, 房志涛, 曹毅, 孔爽, 林涛, 龚茂初, 陈耀强. 催化学报), 2012, 33: 1927

    18. [18]

      [18] Odenbrand C U I. Chem Eng Res Des, 2008, 86: 663

    19. [19]

      [19] Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A. Appl Catal B, 2002, 39: 181

    20. [20]

      [20] Van Setten B A A L, Makkee M, Moulijn J A. Catal Rev-Sci Eng, 2001, 43: 489

    21. [21]

      [21] Thiruvengadam A, Besch M C, Carder D K, Oshinuga A, Gautam M. Environ Sci Technol, 2012, 46: 1907

    22. [22]

      [22] Reddy B M, Mehdi S, Reddy E P. Catal Lett, 1993, 20: 317

    23. [23]

      [23] Albonetti S, Blasioli S, Bugani M, Lehaut-Burnouf C, Augustine S, Roncari E, Trifirò F. Environ Chem Lett, 2003, 1: 197

    24. [24]

      [24] Reddy B M, Kumar M V, Reddy E P, Mehdi S. Catal Lett, 1996, 36: 187

    25. [25]

      [25] Shi A J, Wang X Q, Yu T, Shen M Q. Appl Catal B, 2011, 106: 359

    26. [26]

      [26] Casanova M, Schermanz K, Llorca J, Trovarelli A. Catal Today, 2012, 184: 227

    27. [27]

      [27] Reiche M A, Hug P, Baiker A. J Catal, 2000, 192: 400

    28. [28]

      [28] Reddy B M, Ganesh I, Reddy E P. J Phys Chem B, 1997, 101: 1769

    29. [29]

      [29] Chiker F, Nogier J P, Bonardet J L. Catal Today, 2003, 78: 139

    30. [30]

      [30] Went G T, Leu L, Bell A T. J Catal, 1992, 134: 479

    31. [31]

      [31] Yu X F, Wu N Z, Xie Y C, Tang Y Q. J Mater Sci Lett, 2001, 20: 319

  • 加载中
    1. [1]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    2. [2]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    11. [11]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    16. [16]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    19. [19]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(0)
  • Abstract views(410)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return