Citation: Ruimei Fang, Yajuan Cui, Sijie Chen, Hongyan Shang, Zhonghua Shi, Maochu Gong, Yaoqiang Chen. A highly efficient Rh-modified Pd/Al2O3 close-coupled catalyst[J]. Chinese Journal of Catalysis, ;2015, 36(2): 229-236. doi: 10.1016/S1872-2067(14)60214-X shu

A highly efficient Rh-modified Pd/Al2O3 close-coupled catalyst

  • Corresponding author: Zhonghua Shi,  Yaoqiang Chen, 
  • Received Date: 6 July 2014
    Available Online: 26 August 2014

    Fund Project: 国家自然科学基金(21173153) (21173153) 国家高技术研究发展计划(863计划, 2013AA065304) (863计划, 2013AA065304) 四川省科技厅科技支撑项目(2011GZ0035, 2012FZ0008). (2011GZ0035, 2012FZ0008)

  • The close-coupled catalysts Pd/Al2O3 and Rh-Pd/Al2O3 were prepared by the impregnation method and characterized by H2 temperature-programmed reduction, CO chemisorption, and X-ray photoelectron spectroscopy. Both overall catalytic activity and specific reactions associated with C3H8 elimination were assessed. The light-off temperature and complete conversion temperature decreased by 23 and 18 ℃, respectively, upon addition of Rh to the Pd/Al2O3 catalyst. The addition of Rh promotes the catalytic activity during C3H8 reactions, particularly in the presence of NO. The introduction of Rh not only inhibits sintering of PdOx and increases the dispersion of these same species, but also changes the electronic state of the PdOx in the catalyst.
  • 加载中
    1. [1]

      [1] Zhu J, Zhang L L, Deng Y, Liu B, Dong L H, Gao F, Sun K Q, Dong L, Chen Y. Appl Catal B, 2010, 96: 449

    2. [2]

      [2] Li Z Q, Meng M, Dai F F, Hu T D, Xie Y N, Zhang J. Fuel, 2012, 93: 606

    3. [3]

      [3] Yu Q, Yao X J, Zhang H L, Gao F, Dong L. Appl Catal A, 2012, 423-424: 42

    4. [4]

      [4] Heck R M, Farrauto R J. Appl Catal A, 2001, 221: 443

    5. [5]

      [5] Kaãpar J, Fornasiero P, Hickey N. Catal Today, 2003, 77: 419

    6. [6]

      [6] Fang R M, He S N, Cui Y J, Shi Z H, Gong M C, Chen Y Q. Chin J Catal (方瑞梅, 何胜楠, 崔亚娟, 史忠华, 龚茂初, 陈耀强. 催化学报), 2012, 33: 1014

    7. [7]

      [7] Wang G, Meng M, Zha Y Q, Ding T. Fuel, 2010, 89: 2244

    8. [8]

      [8] Kaãpar J, Fornasiero P, Graziani M. Catal Today, 1999, 50: 285

    9. [9]

      [9] Neyertz C, Volpe M, Gigola C. Appl Catal A, 2004, 277: 137

    10. [10]

      [10] Spinicci R, Tofanari A. Appl Catal A, 2002, 227: 159

    11. [11]

      [11] Wilcox L, Burnside G, Kiranga B, Shekhawat R, Mazumder M K, Hawk R M, Lindquist D A, Burton S D. Chem Mater, 2003, 15: 51

    12. [12]

      [12] Wu X D, Yang B, Weng D. J Alloys Compd, 2004, 376: 241

    13. [13]

      [13] Liotta L F, Macaluso A, Arena G E, Livi M, Centi G, Deganello G. Catal Today, 2002, 75: 439

    14. [14]

      [14] Chen X Y, Liu Y, Niu G X, Yang Z X, Bian M Y, He A D. Appl Catal A, 2001, 205: 159

    15. [15]

      [15] Monteiro R S, Dieguez L C, Schmal M. Catal Today, 2001, 65: 77

    16. [16]

      [16] Fujimoto K-i, Ribeiro F H, Avalos-Borja M, Iglesia E. J Catal, 1998, 179: 431

    17. [17]

      [17] Briot P, Primet M. Appl Catal, 1991, 68: 301

    18. [18]

      [18] Rassoul M, Gaillard F, Garbowski E, Primet M. J Catal, 2001, 203: 232

    19. [19]

      [19] Farrauto R J, Lampert J K, Hobson M C, Waterman E M. Appl Catal B, 1995, 6: 263

    20. [20]

      [20] Narui K, Yata H, Furuta K, Nishida A, Kohtoku Y, Matsuzaki T. Appl Catal A, 1999, 179: 165

    21. [21]

      [21] Ahlström-Silversand A F, Odenbrand C U I. Appl Catal A, 1997, 153: 157

    22. [22]

      [22] Yao Y L, Fang R M, Shi Z H, Gong M C, Chen Y Q. Chin J Catal (姚艳玲, 方瑞梅, 史忠华, 龚茂初, 陈耀强. 催化学报), 2011, 32: 589

    23. [23]

      [23] Narui K, Furuta K, Yata H, Nishida A, Kohtoku Y, Matsuzaki T. Catal Today, 1998, 45: 173

    24. [24]

      [24] Wang Y, Shang H Y, Xu H D, Gong M C, Chen Y Q. Chin J Catal (王云, 尚鸿燕, 徐海迪, 龚茂初, 陈耀强. 催化学报), 2014, 35: 1157

    25. [25]

      [25] Bonarowska M, Pielaszek J, Juszczyk W, Karpiński Z. J Catal, 2000, 195: 304

    26. [26]

      [26] Zhao B, Wang Q Y, Li G F, Zhou R X. J Environ Chem Eng, 2013, 1: 534

    27. [27]

      [27] Liu J Y, Zhao M, Xu C H, Liu S Y, Zhang X Q, Chen Y Q. Chin J Catal (刘建英, 赵明, 徐成华, 刘盛余, 张雪乔, 陈耀强. 催化学报), 2013, 34: 751

    28. [28]

      [28] Kobayashi T, Yamada T, Kayano K. Appl Catal B, 2001, 30: 287

    29. [29]

      [29] Maione A, André F, Ruiz P. Appl Catal A, 2007, 333: 1

    30. [30]

      [30] Bourane A, Derrouiche S, Bianchi D. J Catal, 2004, 228: 288

    31. [31]

      [31] Usami Y, Kagawa K, Kawazoe M, Matsuma Y, Sakurai H, Haruta M. Appl Catal A, 1998, 171: 123

    32. [32]

      [32] Shinjoh H, Muraki H, Fujitani Y. Appl Catal, 1989, 49: 195

    33. [33]

      [33] Mannila P, Salmi T, Haario H, Luoma M, Härkönen M, Sohlo J. Appl Catal B, 1996, 7: 179

    34. [34]

      [34] Li Y, Wang X X, Xie C, Song C S. Appl Catal A, 2009, 357: 213

    35. [35]

      [35] Yan C Y, Lan L, Chen S H, Zhao M, Gong M C, Chen Y Q, Chin J Catal (闫朝阳, 兰丽, 陈山虎, 赵明, 龚茂初, 陈耀强. 催化学报), 2012, 33: 336

  • 加载中
    1. [1]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    3. [3]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    4. [4]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    7. [7]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    8. [8]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    9. [9]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    10. [10]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    11. [11]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    12. [12]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    13. [13]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    14. [14]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    18. [18]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

Metrics
  • PDF Downloads(254)
  • Abstract views(647)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return