Citation: Hong Liu, Xiaofeng Wu, Xiangqi Li, Jie Wang, Ximei Fan. Simple preparation of scale-like CuO nanoparticles coated on tetrapod-like ZnO whisker photocatalysts[J]. Chinese Journal of Catalysis, ;2014, 35(12): 1997-2005. doi: 10.1016/S1872-2067(14)60198-4 shu

Simple preparation of scale-like CuO nanoparticles coated on tetrapod-like ZnO whisker photocatalysts

  • Corresponding author: Ximei Fan, 
  • Received Date: 12 May 2014
    Available Online: 8 July 2014

    Fund Project: 国家高技术研究发展计划(863计划, 2009AA03Z427). (863计划, 2009AA03Z427)

  • Scale-like copper oxide (CuO)/tetrapod-like ZnO whisker (T-ZnOw) nanocomposites were fabricated using poly(ethylene glycol) (PEG; Mw = 400) as a soft template by a simple and environmentally friendly method without the use of hydroxide reagents at low temperatures. The structures and morphologies of the samples were investigated in detail, and the photocatalytic properties of the samples were determined using photoluminescence (PL) detection and the photocatalytic degradation of cationic pollutant (methylene blue, MB) and anionic pollutant (methyl orange, MO) aqueous solutions under ultraviolet (UV) irradiation. Large numbers of scale-like CuO nanoparticles were deposited on the T-ZnOw surfaces in an ordered fashion; the amount of scale-like CuO nanoparticles increased, and the arrangement became more ordered with increasing PEG 400 content. The PL emission peak intensities of the samples changed with increasing PEG 400 content. All the CuO/T-ZnOw nanocomposites showed excellent photocatalytic activities in the degradation of MB and MO aqueous solutions under UV irradiation when the PEG 400 concentration was less than or equal to 0.60 mol/L. The photocatalytic properties of the samples improved with increasing PEG400 concentration, but deteriorated when the PEG 400 concentration was increased further; this was reflected by the emission peak intensities in the PL spectra. The nanocomposites showed better efficiency for MB degradation than for MO degradation under the same conditions.
  • 加载中
    1. [1]

      [1] Schwitzgebel J, Ekerdt J G, Gerischer H, Heller A. J Phys Chem, 1995, 99: 5633

    2. [2]

      [2] Willner I, Eichen Y, Frank A J, Fox M A. J Phys Chem, 1993, 97: 7264

    3. [3]

      [3] Suzuki M, Ito T, Taga Y. Appl Phys Lett, 2001, 78: 3968

    4. [4]

      [4] Gu C D, Cheng C, Huang H Y, Wong T L, Wang N, Zhang T Y. Cryst Growth Des, 2009, 9: 3278

    5. [5]

      [5] Khodja A A, Sehili T, Pilichowski J F, Boule P. J Photochem Photobiol A, 2001, 141: 231

    6. [6]

      [6] Mansilla H D, Villasenor J, Maturana G, Baeza J, Freer J, Durán N. J Photochem Photobiol A, 1994, 78: 267

    7. [7]

      [7] Ohnishi H, Matsumura M, Tsubomura H, Iwasaki M. Ind Eng Chem Res, 1989, 28: 719

    8. [8]

      [8] Xu X L, Duan X, Yi Z G, Zhou Z W, Fan X M, Wang Y. Catal Commun, 2010, 12: 169

    9. [9]

      [9] Yamaguchi Y, Yamazaki M, Yoshihara S, Shirakashi T. J Electroanal Chem, 1998, 442: 1

    10. [10]

      [10] Wan Q, Wang T H, Zhao J C. Appl Phys Lett, 2005, 87: 083105

    11. [11]

      [11] Liu H, Wang J, Fan X M, Zhang F Z, Liu H R, Dai J, Xiang F M. Mater Sci Eng B, 2013, 178: 158

    12. [12]

      [12] Xu C, Cao L X, Su G, Liu W, Liu H, Yu Y Q, Qu X F. J Hazard Mater, 2010, 176: 807

    13. [13]

      [13] Koffyberg F P, Benko F A. J Appl Phys, 1982, 53: 1173

    14. [14]

      [14] Wang L, Han K, Song G, Yang X, Tao M. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, 2006, 1: 130

    15. [15]

      [15] Bennici S, Gervasini A. Appl Catal B, 2006, 62: 336

    16. [16]

      [16] Lo C H, Tsung T T, Chen L C, Su C H, Lin H M. J Nanopart Res, 2005, 7: 313

    17. [17]

      [17] Zhou K B, Wang R P, Xu B Q, Li Y D. Nanotechnology, 2006, 17: 3939

    18. [18]

      [18] Zhang C, Yin L W, Zhang L Y, Qi Y X, Lun N. Mater Lett, 2012, 67: 303

    19. [19]

      [19] Wei S Q, Chen Y Y, Ma Y Y, Shao Z C. J Mol Catal A, 2010, 331: 112

    20. [20]

      [20] Saravanan R, Karthikeyan S, Gupta V K, Sekaran G, Narayanan V, Stephen A. Mater Sci Eng C, 2013, 33: 91

    21. [21]

      [21] Liu Z L, Deng J C, Deng J J, Li F F. Mater Sci Eng B, 2008, 150: 99

    22. [22]

      [22] Li B X, Wang Y F. Superlattice Microstruct, 2010, 47: 615

    23. [23]

      [23] Zhou Z W, Peng W M, Ke S Y, Deng H. J Mater Process Technol, 1999, 89-90: 415

    24. [24]

      [24] Wu D Z, Fan X M, Tian K, Dai J, Liu H R. Trans Nonferr Metal Soc China, 2012, 22: 1620

    25. [25]

      [25] Jing L Q, Xu Z L, Sun X J, Shang J, Cai W M. Appl Surf Sci, 2001, 180: 308

    26. [26]

      [26] Ai Z H, Zhang L Z, Lee S C, Ho W K. J Phys Chem C, 2009, 113: 20896

    27. [27]

      [27] Peng W Q, Qu S C, Cong G W, Wang Z G. Cryst Growth Des, 2006, 6: 1518

    28. [28]

      [28] Sakai Y, Ninomiya S, Hiraoka K. Surf Interface Anal, 2012, 44: 938

    29. [29]

      [29] Wang W Z, Zhan Y J, Wang X S, Liu Y K, Zheng C L, Wang G H. Mater Res Bull, 2002, 37: 1093

    30. [30]

      [30] Borgohain K, Murase N, Mahamuni S. J Appl Phys, 2002, 92: 1292

    31. [31]

      [31] Wang J, Fan X M, Wu D Z, Dai J, Liu H, Liu H R, Zhou Z W. Appl Surf Sci, 2011, 258: 1797

    32. [32]

      [32] Shang M, Wang W Z, Zhou L, Sun S M, Yin W Z. J Hazard Mater, 2009, 172: 338

    33. [33]

      [33] Gupta J, Barick K C, Bahadur D. J Alloys Compd, 2011, 509: 6725

    34. [34]

      [34] Song L, Qiu R L, Mo Y Q, Zhang D D, Wei H, Xiong Y. Catal Commun, 2007, 8: 429

    35. [35]

      [35] Yang Z M, Zhang P, Ding Y H, Jiang Y, Long Z L, Dai W L. Mater Res Bull, 2011, 46: 1625

    36. [36]

      [36] Fan X M, Lian J S, Guo Z X, Lu H J. Appl Surf Sci, 2005, 239: 176

    37. [37]

      [37] Kansal S K, Singh M, Kaur M P, Sud D. Indian Chem Engr Sect B, 2005, 47: 111

    38. [38]

      [38] Kansal S K, Singh M, Sud D. J Hazard Mater, 2007, 141: 581

    39. [39]

      [39] Zhang Q, Jing Y H, Shiue A, Chang C T, You W Y. Adv Sci Lett, 2012, 18: 213

    40. [40]

      [40] Aissa A H, Puzenat E, Plassais A, Herrmann J M, Haehnel C, Guillard C. Appl Catal B, 2011, 107: 1

    41. [41]

      [41] Xia S J, Liu F X, Ni Z M, Shi W, Xue J L, Qian P P. Appl Catal B, 2014, 144: 570

  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    4. [4]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    7. [7]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    8. [8]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    9. [9]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    12. [12]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    20. [20]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

Metrics
  • PDF Downloads(0)
  • Abstract views(444)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return