Citation: Lianyue Wang, Bo Chen, Lanhui Ren, Henyun Zhang, Ying Lü, Shuang Gao. Vanadium catalyzed direct synthesis of imines from amines or alcohols and amines by an aerobic oxidative reaction under mild conditions[J]. Chinese Journal of Catalysis, ;2015, 36(1): 19-23. doi: 10.1016/S1872-2067(14)60196-0 shu

Vanadium catalyzed direct synthesis of imines from amines or alcohols and amines by an aerobic oxidative reaction under mild conditions

  • Corresponding author: Shuang Gao, 
  • Received Date: 20 June 2014
    Available Online: 16 July 2014

    Fund Project: 国家重点基础研究发展计划(973计划, 2009CB623505). (973计划, 2009CB623505)

  • The direct synthesis of imines from amines or alcohols and amines by vanadium catalyzed aerobic oxidation was developed. Without an additive or promoter, various symmetrical and unsymmetrical imines were obtained in good to excellent yields under mild conditions with air as an environmentally benign oxidant. The catalyst is very easy to prepare and use, and this catalytic system is also effective for the synthesis of heteroatom-containing imines.
  • 加载中
    1. [1]

      [1] Murahashi S I. Angew Chem Int Ed, 1995, 34: 2443

    2. [2]

      [2] Gawronski J, Wascinska N, Gajewy J. Chem Rev, 2008, 108: 5227

    3. [3]

      [3] Adams J P. J Chem Soc, Perkin Trans 1, 2000: 125

    4. [4]

      [4] Layer R W. Chem Rev, 1963, 63: 489

    5. [5]

      [5] Gawronski J, Wascinska N, Gajewy J. Chem Rev, 2008, 108: 5227

    6. [6]

      [6] Taguchi K, Westheimer F H. J Org Chem, 1971, 36: 1570

    7. [7]

      [7] Das B, Ravikanth B, Laxminarayana K, Rao B V. J Mol Catal A, 2006, 253: 92

    8. [8]

      [8] Sun H, Su F Z, Ni J, Cao Y, He H Y, Fan K N. Angew Chem Int Ed, 2009, 48: 4390

    9. [9]

      [9] Kegnæs S, Mielby J, Mentzel U V, Christensen C H, Riisager A. Green Chem, 2010, 12: 1437

    10. [10]

      [10] Gnanaprakasam B, Zhang J, Milstein D. Angew Chem Int Ed, 2010, 49: 1468

    11. [11]

      [11] Su F Z, Mathew S C, Mohlmann L, Antonietti M, Wang X C, Blechert S. Angew Chem Int Ed, 2011, 50: 657

    12. [12]

      [12] Grirrane A, Corma A, Garcia H. J Catal, 2009, 264: 138

    13. [13]

      [13] Zhu B L, Angelici R J. Chem Commun, 2007: 2157

    14. [14]

      [14] So M H, Liu Y G, Ho C M, Che C M. Chem Asian J, 2009, 4: 1551

    15. [15]

      [15] Gunanathan C, Ben-David Y, Milstein D. Science, 2007, 317: 790

    16. [16]

      [16] Watson A J A, Williams J M J. Science, 2010, 329: 635

    17. [17]

      [17] Watson A J A, Maxwell A C, Williams J M J. Org Lett, 2009, 11: 2667

    18. [18]

      [18] Bala M, Verma P K, Kumar N, Sharma U, Singh B. Can J Chem, 2013, 91: 732

    19. [19]

      [19] Perez J M, Cano R, Yus M, Ramon D J. Eur J Org Chem, 2012, 2012: 4548

    20. [20]

      [20] Cano R, Ramon D J, Yus M. J Org Chem, 2011, 76: 5547

    21. [21]

      [21] Tang L, Sun H Y, Li Y F, Zha Z G, Wang Z Y. Green Chem, 2012, 14: 3423

    22. [22]

      [22] Reddy M M, Kumar M A, Swamy P, Naresh M, Srujana K, Satyanarayana L, Venugopal A, Narender N. Green Chem, 2013, 15: 3474

    23. [23]

      [23] Blackburn L, Taylor R J K. Org Lett, 2001, 3: 1637

    24. [24]

      [24] Yusubov M S, Chi K W, Park J Y, Karimov R, Zhdankin V V. Tetrahedron Lett, 2006, 47: 6305

    25. [25]

      [25] Kwon M S, Kim S, Park S, Bosco W, Chidrala R K, Park J. J Org Chem, 2009, 74: 2877

    26. [26]

      [26] Cui W J, Bao Z, Jia M L, Ao W L, Zhu H Y. RSC Adv, 2014, 4: 2601

    27. [27]

      [27] Furukawa S, Suga A, Komatsu T. Chem Commun, 2014, 50: 3277

    28. [28]

      [28] He W, Wang L D, Sun C L, Wu K K, He S B, Chen J P, Wu P, Yu Z K. Chem Eur J, 2011, 17: 13308

    29. [29]

      [29] Soule J F, Miyamura H, Kobayashi S. Chem Commun, 2013, 49: 355

    30. [30]

      [30] Zhang L L, Wang W T, Wang A Q, Cui Y T, Yang X F, Huang Y Q, Liu X Y, Liu W G, Son J Y, Oji H, Zhang T. Green Chem, 2013, 15: 2680

    31. [31]

      [31] Neeli C K P, Ganji S, Ganjala V S P, Kamaraju S R R, Burri D R. RSC Adv, 2014, 4: 14128

    32. [32]

      [32] Mielby J, Poreddy R, Engelbrekt C, Kengnæs S. Chin J Catal (催化学报), 2014, 35: 670

    33. [33]

      [33] Kim J W, He J L, Yamaguchi K, Mizuno N. Chem Lett, 2009, 38: 920

    34. [34]

      [34] Chem B, Li J, Dai W, Wang L Y, Gao S. Green Chem, 2014, 16: 3328

    35. [35]

      [35] Zhang E L, Tian H W, Xu S D, Yu X C, Xu Q. Org Lett, 2013, 15: 2704

    36. [36]

      [36] Kang Q, Zhang Y G. Green Chem, 2012, 14: 1016

    37. [37]

      [37] Huang B, Tian H W, Lin S S, Xie M H, Yu X C, Xu Q. Tetrahedron Lett, 2013, 54: 2861

    38. [38]

      [38] Tian H W, Yu X C, Li Q, Wang J X, Xu Q. Adv Synth Catal, 2012, 354: 2671

    39. [39]

      [39] Wang J Q, Lu S L, Cao X Q, Gu H W. Chem Commun, 2014, 50: 5637

    40. [40]

      [40] Jiang L, Jin L L, Tian H W, Yuan X Q, Yu X C, Xu Q. Chem Commun, 2011, 47: 10833

    41. [41]

      [41] Qiu X, Len C, Luque R, Li Y W. ChemSusChem, 2014, 7: 1684

    42. [42]

      [42] Punniyamurthy T, Velusamy S, Iqbal J. Chem Rev, 2005, 105: 2329

    43. [43]

      [43] Kodama S, Yoshida J, Nomoto A, Ueta Y, Yano S, Ueshima M, Ogawa A. Tetrahedron Lett, 2010, 51: 2450

    44. [44]

      [44] Hanson S K, Wu R L, Silks L A P. Org Lett, 2011, 13: 1908

    45. [45]

      [45] Hanson S K, Wu R L, Silks L A P. Angew Chem Int Ed, 2012, 51: 3410

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    5. [5]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    6. [6]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    9. [9]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    12. [12]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    13. [13]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    14. [14]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    15. [15]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    16. [16]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    17. [17]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    18. [18]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    19. [19]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(193)
  • Abstract views(574)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return