Citation:
Pengjia Tan, Zhihua Gao, Chaofeng Shen, Yali Du, Xiaodong Li, Wei Huang. Ni-Mg-Al solid basic layered double oxide catalysts prepared using surfactant-assisted coprecipitation method for CO2 reforming of CH4[J]. Chinese Journal of Catalysis,
;2014, 35(12): 1955-1971.
doi:
10.1016/S1872-2067(14)60171-6
-
Ni-Mg-Al solid basic catalysts for CO2 reforming of CH4 were prepared using a surfactant-assisted coprecipitation method. The preferred orientations of the surfactants on the Ni(111) and Ni(200) crystal planes were investigated. The catalytic performance of the surfactant-modified catalysts was tested at 800 ℃. The cetyltrimethylammonium bromide (CTAB)-modified catalyst (CB-LDO; LDO = layered double oxide) was further studied at various reaction temperatures. All the catalysts were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, temperature- programmed reduction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and temperature-programmed oxidation. The results show that growth of the Ni(200) plane is promoted by tetrapropylammonium hydroxide and restrained by P123, PVP, and CTAB. The crystallinity degree of Ni(200) plays a key role in the activation of CH4. The CB-LDO catalysts retain high activities and stabilities, because of the crystal phase transformation at high temperature during the reaction; this leads to the formation of spinel NiAl2O4 and exposure of the Ni(200) crystal plane.
-
-
-
[1]
[1] Naomohan, Fu X J, Lei Y Q, Zhang H J, Su H Q. Chin J Catal (瑙莫汗, 付晓娟, 雷艳秋, 苏海全. 催化学报), 2014, 34: 379
-
[2]
[2] Xu L L, Song H L, Chou L J. Appl Catal B, 2011, 108-109: 177
-
[3]
[3] Zhang X Q, Wang N, Xu Y, Yin Y X, Shang S Y. Catal Commun, 2014, 45: 11
-
[4]
[4] Shen C F. [MS Dissertation]. Tai yuan: Taiyuan Univ Technol (沈朝峰. [硕士研究生学位论文]. 太原: 太原理工大学), 2013
-
[5]
[5] Forano C, Hibino T, Leroux F, Taviot-Guého C. Developments in Clay Science, 2006, 1: 1021
-
[6]
[6] Ren S B, Wen H Z, Cao X Z, Wang Z C, Lei Z P, Pan C X, Kang S G, Shui H F. Chin J Catal (任世彪, 文宏志, 曹先中, 王知彩, 雷智平, 潘春秀, 康士刚, 水恒福. 催化学报), 2014, 35: 546
-
[7]
[7] Xiang G L, Wang X. Chin J Inorg Chem (相国磊, 王训. 无机化学学报), 2011, 27: 2323
-
[8]
[8] Li Y, Shen W J. Sci Chin Chem, 2012, 55: 2485
-
[9]
[9] Hu Q H, Li X C, Yang A J, Yang C Y. Chin J Catal (胡全红, 黎先财, 杨爱军, 杨春燕. 催化学报), 2012, 33: 563
-
[10]
[10] Rives V. Mater Chem Phys, 2002, 75: 19
-
[11]
[11] Gao P, Li F, Zhao N, Wang H, Wei W, Sun Y H. Acta Phys-Chim Sin (高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕. 物理化学学报), 2014, DOI: 10.3866/PKU.WHXB201401252
-
[12]
[12] Djebarri B, Gonzalez-Delacruz V M, Halliche D, Bachari K, Saadi A, Caballero A, Holgado J P, Cherifi O. Reac Kinet Mech Catal, 2014, 111: 259
-
[13]
[13] Zaghouane-Boudiaf H, Boutahala M, Arab L. Chem Eng J, 2012, 187: 142
-
[14]
[14] Li D L, Atake I, Shishido T, Oumi Y, Sano T, Takehira, K. J Catal, 2007, 250: 299
-
[15]
[15] Nam H S, Hwang N M, Yu B D,Yoon J K. Phys Rev Lett, 2002, 89: 275502
-
[16]
[16] Shen X J, Yang J P, Liu Y, Luo Y S, Fu S Y. New J Chem, 2011, 35: 1403
-
[17]
[17] Li P W, Wang N, Wang R M. Eur J Inorg Chem, 2010: 2261
-
[18]
[18] Li J D, Croiset E, Ricardez-Sandoval L. J Mol Catal A, 2012, 365: 103
-
[19]
[19] Wang S G, Cao D B, Li Y W, Wang J G, Jiao H J. Surf Sci, 2006, 600: 3226
-
[20]
[20] Wang Q S, Ren W, Yuan X L, Mu R M, Song, Z L,Wang X L. Int J Hydrogen Energy, 2012, 37: 11488
-
[21]
[21] Kumar P, Sun Y P, Idem R O. Energy Fuels, 2008, 22: 3575
-
[22]
[22] Xiao H P, Liu Z C, Zhou X G, Zhu K K. Catal Commun, 2013, 34: 11
-
[23]
[23] Bang Y J, Han S J, Yoo J K, Choi J H, Kang K H, Song J H, Seo J G, Jung J C, Song I K. Int J Hydrogen Energy, 2013, 38: 8751.
-
[24]
[24] Dieuzeide M L, Iannibelli V, Jobbagy M, Amadeo N. Int J Hydrogen Energy, 2012, 37: 14926.
-
[25]
[25] Du X J, Zhang D S, Shi L Y, Gao R H, Zhang J P. Nanoscale, 2013, 5: 2659.
-
[26]
[26] Mora M, Jiménez-Sanchidrián C, Ruiz J R. J Colloid Interf Sci, 2006, 302: 568
-
[27]
[27] Lucrédio A F, Jerkiewickz G, Assaf E M. Appl Catal A, 2007, 333: 90
-
[28]
[28] Wang Z T, Shao X, Larcher A, Xie K, Dong D H, Li C Z. Catal Today, 2013, 216: 44
-
[29]
[29] Kang K M, Kim H W, Shim I W, Kwak H Y. Fuel Process Technol, 2011, 92: 1236
-
[30]
[30] Ning F Y, Shao M F, Zhang C L, Xu S M, Wei M, Duan X. Nano Energy, 2014, 7: 134
-
[31]
[31] Hou J, Liu Z M, Lin G D,Zhang H B. Int J Hydrogen Energy, 2014, 39: 1315
-
[32]
[32] Liu D P, Wang Y F, Shi D M, Jia X L, Wang X, Borgna A, Lau R, Yang Y H. Int J Hydrogen Energy, 2012, 37: 10135
-
[33]
[33] Damyanova S, Pawelec B. Arishtirova K, Fierro J L G. Int J Hydrogen Energy, 2012, 37: 15966
-
[34]
[34] Salam M A, Sufian S, Murugesan T. Mater Chem Phys, 2013, 142: 213
-
[35]
[35] Alvar E N, Rezaei M. Scripta Mater, 2009, 61: 212
-
[36]
[36] Hadian N, Rezaei M, Mosayebi Z, Meshkani F. J Nat Gas Chem, 2012, 21: 200
-
[37]
[37] Zhai X L, Ding S, Liu Z H, Jin Y, Cheng Y. Int J Hydrogen Energy, 2011, 36: 482
-
[38]
[38] Bai Y, Long R, Wang C M, Xiong Y J. J Univ Sci Technol Chin (柏彧, 龙冉, 王成名, 熊宇杰. 中国科学技术大学学报), 2013, 43: 889
-
[39]
[39] Chen Y G, Ren J. Catal Lett, 1994, 29: 39.
-
[40]
[40] Liu C J, Ye J Y, Jiang J J, Pan Y X. ChemCatChem, 2011, 3: 529
-
[41]
[41] Zhu J Q, Peng X X, Yao L, Tong D M, Hu C W. Catal Sci Technol, 2012, 2: 529
-
[42]
[42] Wang N, Yu X P, Shen K, Chu W,Qian W Z. Int J Hydrogen Energy, 2013, 38: 9718
-
[43]
[43] Eltejaei H, Reza Bozorgzadeh H, Towfighi J, Reza Omidkhah M, Rezaei M, Zanganeh R, Zamaniyan A, Zarrin Ghalam A. Int J Hydrogen Energy, 2012, 37: 4107
-
[44]
[44] Koerts T, Van Santen R A. J Chem Soc, Chem Commun, 1991: 1281
-
[45]
[45] Shi C K, Zhang P. Appl Catal B, 2012, 115-116: 190
-
[46]
[46] Hao Z G, Zhu Q S, Jiang Z, Hou B L, Li H Z. Fuel Process Technol, 2009, 90: 113
-
[47]
[47] Zhang Z L, Verykios X E. Catal Today, 1994, 21: 589
-
[48]
[48] Zhang H, Li M, Xiao P, Liu D, Zou C J. Chem Eng Technol, 2013, 36:1701.
-
[49]
[49] Sun L Z, Tan Y S, Zhang Q D, Xie H J, Song F, Han Y Z. Int J Hydrogen Energy, 2013, 38: 1892
-
[50]
[50] Long J W, Laskoski M, Keller T M, Pettigrew K A, Zimmerman T N, Qadri S B, Peterson G W. Carbon, 2010, 48: 501
-
[51]
[51] Tang S, Ji L, Li J, Zeng H C, Tan K L, Li K. J Catal,2000, 194: 424
-
[52]
[52] Zhang J G, Wang H, Dalai Ajay K. Appl Catal A, 2008, 339: 121
-
[53]
[53] Kroll V C H, Swaan, H M, Mirodatos C. J Catal, 1996, 161: 409
-
[1]
-
-
-
[1]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[2]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[3]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[4]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[5]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[6]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[8]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[9]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[10]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[11]
Yi Fan , Zhuoqi Jiang , Zhipeng Li , Xuan Zhou , Jingan Lin , Laiying Zhang , Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061
-
[12]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[13]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[14]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[15]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[16]
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
-
[17]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
-
[18]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[19]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[20]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(385)
- HTML views(8)