Citation: Zhiteng Zhang, Lisa Pfefferle, Gary L. Haller. Comparing characterization of functionalized multi-walled carbon nanotubes by potentiometric proton titration, NEXAFS, and XPS[J]. Chinese Journal of Catalysis, ;2014, 35(6): 856-863. doi: 10.1016/S1872-2067(14)60123-6 shu

Comparing characterization of functionalized multi-walled carbon nanotubes by potentiometric proton titration, NEXAFS, and XPS

  • Corresponding author: Gary L. Haller, 
  • Received Date: 4 April 2014
    Available Online: 26 April 2014

  • Since the discovery of carbon nanotubes (CNT), this material has been recognized as an attractive catalyst support. CNT must be functionalized before use as a catalyst support and typically this involves oxidation. However, the functional group distribution on the CNT is very complex mixture of groups and varies with oxidation agent used. Here a simple acid-base titration is introduced to characterize the oxygen functionalized CNT. By comparing characterization with near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) for both at the C and O K-edges, it can be demonstrated that potentiometric proton titration can be a fast and quantitative analysis for Brönsted acid functional groups on CNT.
  • 加载中
    1. [1]

      [1] Ruoff R S, Lorents D C. Carbon, 1995, 33: 925

    2. [2]

      [2] Popov V N. Mater Sci Eng R,2004, 43: 61

    3. [3]

      [3] Zhang X T, Zhang J, Wang R M, Liu Z F. Carbon,2004, 42: 1455

    4. [4]

      [4] Thostenson E T, Li C Y, Chou T W. Compos Sci Technol,2005, 65: 491

    5. [5]

      [5] Kong J, Franklin N R, Zhou C W, Chapline M G, Peng S, Cho K, Dai H J. Science,2000, 287: 622

    6. [6]

      [6] Qi W, Liu W, Zhang B S, Gu X M, Guo X L, Su D S. Angew Chem Int Ed, 2013, 52: 14224

    7. [7]

      [7] Wang X M, Li N, Zhang Z T, Wang C, Pfefferle L D, Haller G L. ACS Cataly,2012, 2: 1480

    8. [8]

      [8] Liu X C, Si J H, Chang B H, Xu G, Yang Q G, Pan Z W, Xie S S, Ye P X, Fan J H, Wan M X. Appl Phys Lett,1999, 74: 164

    9. [9]

      [9] Lee S M, Lee Y H. Appl Phys Lett,2000, 76: 2877

    10. [10]

      [10] Chen C M, Zhang Q, Yang M G, Huang C H, Yang Y G, Wang M Z. Carbon, 2012, 50: 3572

    11. [11]

      [11] Tans S J, Verschueren A R M, Dekker C. Nature,1998, 393: 49

    12. [12]

      [12] Satishkumar B C, Govindaraj A, Mofokeng J, Subbanna G N, Rao C N R. J Phys B,1996, 29: 4925

    13. [13]

      [13] Zhang N Y, Xie J N, Varadan V K. Smart Mater Struct, 2002, 11: 962

    14. [14]

      [14] Zhang Y, Shi Z, Gu Z, Iijima S. Carbon,2000, 38: 2055

    15. [15]

      [15] Nagasawa S, Yudasaka M, Hirahara K, Ichihashi T, Iijima S. Chem Phys Lett,2000, 328: 374

    16. [16]

      [16] Montes-Morán M A, Suárez D, Menéndez J A, Fuente E. Carbon, 2004,42: 1219

    17. [17]

      [17] Wepasnick K A, Smith B A, Bitter J L, Fairbrother D H. Anal Bioanal Chem, 2010, 396: 1003

    18. [18]

      [18] Smith B W, Luzzi D E. J Appl Phys, 2001, 90: 3509

    19. [19]

      [19] Eklund P C, Holden J M, Jishi R A. Carbon, 1995, 33: 959

    20. [20]

      [20] McPhail M R, Sells J A, He Z, Chusuei C C. J Phys Chem C, 2009, 113: 14102

    21. [21]

      [21] Xia W, Wang Y M, Bergsträßer R, Kundu S, Muhler M. Appl Surf Sci,2007, 254: 247

    22. [22]

      [22] Boehm H P, Diehl E, Heck W, Sappok R. Angew Chem Int Ed,1964, 3: 669

    23. [23]

      [23] Wang H J, Zhou A L, Peng F, Yu H, Yang J. J Colloid Interface Sci, 2007, 316: 277

    24. [24]

      [24] Li Y H, Wang S G, Luan Z K, Ding J, Xu C L, Wu D H. Carbon, 2003, 41: 1057

    25. [25]

      [25] Kuznetsova A, Popova I, Yates J T Jr, Bronikowski M J, Huffman C B, Liu J, Smalley R E, Hwu H H, Chen J G. J Am Chem Soc,2001, 123: 10699

    26. [26]

      [26] Li M H, Boggs M, Beebe T P, Huang C P. Carbon, 2008, 46: 466

    27. [27]

      [27] Langley L A, Villanueva D E, Fairbrother D H. Chem Mater, 2006, 18: 169

    28. [28]

      [28] Lee S, Zhang Z T, Wang X M, Pfefferle L D, Haller G L. Catal Today, 2011, 164: 68

    29. [29]

      [29] Dudal Y, Gérard F. Earth Sci Rev,2004, 66: 199

    30. [30]

      [30] Marinsky J A, Gupta S, Schindler P. J Colloid Interface Sci, 1982, 89: 412

    31. [31]

      [31] Marinsky J A, Ephraim J H. Environ Sci Technol, 1986, 20: 349

    32. [32]

      [32] Wang X M, Li N, Pfefferle L D, Haller G L. Microporous Mesoporous Mater, 2013, 176: 139

    33. [33]

      [33] Liu C C, Lee S, Su D, Lee B, Lee S, Winans R E, Yin C R, Vajda S, Pfefferle L, Haller G L. Langmuir, 2012, 28: 17159

    34. [34]

      [34] Zhang Z, Pfefferle L, Haller G L. Langmuir, to be submitted

    35. [35]

      [35] Scofield J H. Lawrence Livermore National Laboratory Rep. UCRL-51326, 1973

    36. [36]

      [36] Briggs D, Beamson G. Anal Chem,1993, 65: 1517

    37. [37]

      [37] Rosenberg R A, Love P J, Rehn V. Phys Rev B, 1986, 33: 4034

    38. [38]

      [38] Pacilé D, Papagno M, Rodtíguez A F, Grioni M, Papagno L, Girit C ö, Meyer J C, Begtrup G E, Zetti A. Phys Rev Lett,2008, 101: 066806

    39. [39]

      [39] Dikin D A, Stankovich S, Zimney, E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Nature, 2007, 448: 457

    40. [40]

      [40] Lee V, Whittaker L, Jaye C, Baroudi K M, Fischer D A, Banerjee S. Chem Mater,2009, 21: 3905

    41. [41]

      [41] Francis J T, Hitchcock A P. J Phys Chem,1992, 96: 6598

  • 加载中
    1. [1]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    4. [4]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    5. [5]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    6. [6]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    7. [7]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    8. [8]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    9. [9]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    10. [10]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    14. [14]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    15. [15]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    16. [16]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    17. [17]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Yue WangWenli HuBinchao ShiHe JiaShilin MeiChang-Jiang Yao . Design of carbon@WS2 host with graham condenser-like structure for tunable sulfur loading of lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(6): 110065-. doi: 10.1016/j.cclet.2024.110065

    20. [20]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

Metrics
  • PDF Downloads(210)
  • Abstract views(1031)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return