Citation: ZHENG Yun, PAN Zhiming, WANG Xinchen. Advances in photocatalysis in China[J]. Chinese Journal of Catalysis, ;2013, 34(3): 524-535. doi: 10.1016/S1872-2067(12)60548-8 shu

Advances in photocatalysis in China

  • Corresponding author: WANG Xinchen, 
  • Received Date: 19 December 2012
    Available Online: 30 January 2013

    Fund Project: 国家重点基础研究发展计划(973计划, 2013CB632405) (973计划, 2013CB632405) 国家自然科学基金(21033003, 21173043). (21033003, 21173043)

  • We briefly describe the developments in photocatalysis research in China in the three time periods of 1975‒1985, 1985‒1995, and 1995‒2012, focusing on advances in photocatalytic materials and their modifications, applications, and reaction mechanisms. This short review also indicates some vital problems and future development trends in photocatalysis for water splitting, CO2 reduction, environmental purification, and selective organic photosynthesis.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972, 238: 37

    2. [2]

      [2] Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Adv Mater, 2012, 24: 229

    3. [3]

      [3] Jin Z S. Acta Energiae Solaris Sinica, 1982, 3: 179

    4. [4]

      [4] Gao F, Li S B, Chen Y W. Acta Energiae Solaris Sinica, 1981, 4: 396

    5. [5]

      [5] Gao F, Li S B, He Y G. Acta Energiae Solaris Sinica, 1983, 1: 58

    6. [6]

      [6] Kiwi J, Grätzel M. Angew Chem, Int Ed, 1979, 18: 624

    7. [7]

      [7] Chen L H, Gu W Z, Zhu X W, Wang F D, Song Y Z, Hu J H. J Photochem Photobio A, 1993, 74: 85

    8. [8]

      [8] Li S B. J Mol Catal, 1988, 2: 217

    9. [9]

      [9] Wang Z H, Zhuang Q X. J Photochem Photobio A, 1993, 75: 105

    10. [10]

      [10] Wang S S, Wang Z H, Zhuang Q X. Appl Catal B, 1992, 1: 257

    11. [11]

      [11] Chen X B, Mao S S. Chem Rev, 2007, 107: 2891

    12. [12]

      [12] Chen X B. Chin J Catal (陈晓波. 催化学报), 2009, 30: 839

    13. [13]

      [13] Jing L Q, Qu Y C, Wang B Q, Li S D, Jiang B J, Yang L B, Fu W, Fu H G, Sun J Z. Sol Energy Mater Sol Cells, 2006, 90: 1773

    14. [14]

      [14] Linsebigler A L, Lu G Q, Yates J T. Chem Rev, 1995, 95: 735

    15. [15]

      [15] Gao Z Q, Yang S G, Ta N, Sun C. J Hazard Mater, 2007, 145: 424

    16. [16]

      [16] Wang Y W, Zhang L Z, Deng K J, Chen X Y, Zou Z G. J Phys Chem C, 2007, 111: 2709

    17. [17]

      [17] Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Langmuir, 2009, 25: 6438

    18. [18]

      [18] Zhang N, Liu S Q, Fu X Z, Xu Y J. J Phys Chem C, 2011, 115: 9136

    19. [19]

      [19] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Nature, 2008, 453: 638

    20. [20]

      [20] Liu S W, Yu J G, Jaroniec M. J Am Chem Soc, 2010, 132: 11914

    21. [21]

      [21] Pan J, Liu G, Lu G Q, Cheng H M. Angew Chem, Int Ed, 2011, 50: 2133

    22. [22]

      [22] Han X G, Kuang Q, Jin M S, Xie Z X, Zheng L S. J Am Chem Soc, 2009, 131: 3152

    23. [23]

      [23] Guo W X, Zhang F, Lin C J, Wang Z L. Adv Mater, 2012, 24: 4761

    24. [24]

      [24] Yu J C, Zhang L Z, Yu J G. Chem Mater, 2002, 14: 4647

    25. [25]

      [25] Wang X C, Yu J C, Ho C M, Hou Y D, Fu X Z. Langmuir, 2005, 21: 2552

    26. [26]

      [26] Yu J G, Su Y R, Cheng B. Adv Funct Mater, 2007, 17: 1984

    27. [27]

      [27] Yu J G, Zhang L J, Cheng B, Su Y R. J Phys Chem C, 2007, 111: 10582

    28. [28]

      [28] Yu J G, Wang G H. J Phys Chem Solids, 2008, 69: 1147

    29. [29]

      [29] Yu H G, Yu J G, Cheng B, Lin J. J Hazard Mater, 2007, 147: 581

    30. [30]

      [30] Zhang F X, Zhang X, Chen J X, Liu Zh G, Gao W L, Jin R C, Guan N J. Chin J Catal (章福祥, 张秀, 陈继新, 刘智广, 高文亮, 金瑞彩, 关乃佳. 催化学报), 2003, 24: 877

    31. [31]

      [31] Wang P, Huang B B, Dai Y, Whangbo M H. Phys Chem Chem Phys, 2012, 14: 9813

    32. [32]

      [32] Yu J G, Dai G P, Huang B B. J Phys Chem C, 2009, 113: 16394

    33. [33]

      [33] Tong T Z, Zhang J L, Tian B Z, Chen F, He D N. J Hazard Mater, 2008, 155: 572

    34. [34]

      [34] Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Chem Mater, 2002, 14: 3808

    35. [35]

      [35] Yang P, Lu C, Hua N P, Du Y K. Mater Lett, 2002, 57: 794

    36. [36]

      [36] Li X Z, Li F B, Yang C L, Ge W K. J Photochem Photobiol A, 2001, 141: 209

    37. [37]

      [37] Yu H B, Chen S, Quan X, Zhao H M, Zhang Y B. Environ Sci Technol, 2008, 42: 3791

    38. [38]

      [38] Huang H J, Li D Z, Lin Q, Zhang W J, Shao Y, Chen Y B, Sun M, Fu X Z. Environ Sci Technol, 2009, 43: 4164

    39. [39]

      [39] Zhang L W, Wang Y J, Xu T G, Zhu S B, Zhu Y F. J Mol Catal A, 2010, 331: 7

    40. [40]

      [40] Zhang Y H, Tang Z R, Fu X Z, Xu Y J. ACS Nano, 2010, 4: 7303

    41. [41]

      [41] Jin Z L, Zhang X J, Lu G X, Li S B. J Mol Catal A, 2006, 259: 275

    42. [42]

      [42] Jin Z L, Zhang X J, Li Y X, Li S B, Lu G X. Catal Commun, 2007, 8: 1267

    43. [43]

      [43] Fu X Zh, Ding Zh X, Su W Y, Li D Zh. Chin J Catal (付贤智, 丁正新, 苏文悦, 李旦振. 催化学报), 1999, 20: 321

    44. [44]

      [44] Su W Y, Chen Y L, Fu X Zh, Wei K M. Chin J Catal (苏文悦, 陈亦琳, 付贤智, 魏可镁. 催化学报), 2001, 22: 175

    45. [45]

      [45] Yu J C, Zhang L Z, Zheng Z, Zhao J C. Chem Mater, 2003,15: 2280

    46. [46]

      [46] Hou Y D, Wu L, Wang X C, Ding Z X, Li Z H, Fu X Z. J Catal, 2007, 250: 12

    47. [47]

      [47] Jiang J, Zhao K, Xiao X Y, Zhang L Z. J Am Chem Soc, 2012, 134: 4473

    48. [48]

      [48] Huang J H, Ding K N, Hou Y D, Wang X C, Fu X Z. ChemSusChem, 2008, 1: 1011

    49. [49]

      [49] Liang S J, Wu L, Bi J H, Wang W J, Gao J, Li Z H, Fu X Z. Chem Commun, 2010, 46: 1446

    50. [50]

      [50] Ma L L, Sun H Z, Zhang Y G, Lin Y L, Li J L, Wang E K, Yu Y, Tan M, Wang J B. Nanotechnology, 2008, 19: 115709

    51. [51]

      [51] Xie Z, Zhu Y G, Xu J, Huang H T, Chen D, Shen G Z. CrystEngComm, 2011, 13: 6393

    52. [52]

      [52] Cao S W, Zhu Y J. J Phys Chem C, 2008, 112: 6253

    53. [53]

      [53] Wu L, Bi J H, Li Z H, Wang X X, Fu X Z. Catal Today, 2008, 131: 15

    54. [54]

      [54] Tang J W, Zou Z G, Ye J H. Angew Chem, Int Ed, 2004, 43: 4463

    55. [55]

      [55] Guo Y H, Li D F, Hu C W, Wang Y H, Wang E B. Chem J Chin U, 2001, 22: 1453

    56. [56]

      [56] Yan G Y, Wang X X, Fu X Z, Li D Z. Catal Today, 2004, 93-95: 851

    57. [57]

      [57] Li L, Li G D, Yan C, Mu X Y, Pan X L, Zou X X, Wang K X, Chen J S. Angew Chem, Int Ed, 2011, 50: 8299

    58. [58]

      [58] Fu Y H, Sun D R, Chen Y J, Huang R K, Ding Z X, Fu X Z, Li Z H. Angew Chem, Int Ed, 2012, 124: 3420

    59. [59]

      [59] Liu G, Niu P, Yin L C, Cheng H M. J Am Chem Soc, 2012, 134: 9070

    60. [60]

      [60] Xia X H, Jia Z J, Yu Y, Liang Y, Wang Z, Ma L L. Carbon, 2007, 45: 717

    61. [61]

      [61] Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, Gong J R. J Am Chem Soc, 2011, 133: 10878

    62. [62]

      [62] An X Q, Yu J C, Wang Y, Hu Y M, Xu X L, Zhang G J. J Mater Chem, 2012, 22: 8525

    63. [63]

      [63] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76

    64. [64]

      [64] Zhang J S, Zhang G G, Chen X F, Lin S, Möhlmann L, Dolega G, Lipner G, Antonietti M, Blechert S, Wang X C. Angew Chem, Int Ed, 2012, 51: 3183

    65. [65]

      [65] Cui Y J, Ding Z X, Liu P, Antonietti M, Fu X Z, Wang X C. Phys Chem Chem Phys, 2012, 14: 1455

    66. [66]

      [66] Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. J Am Chem Soc, 2004, 126: 4782

    67. [67]

      [67] Wu J C S, Chen C H. J Photochem Photobio A, 2004, 163: 509

    68. [68]

      [68] Hsien Y H, Chang C F, Chen Y H, Cheng S. Appl Catal B, 2001, 31: 241

    69. [69]

      [69] Wang K H, Hsieh Y H, Chou M Y, Chang C Y. Appl Catal B, 1999, 21: 1

    70. [70]

      [70] Wei T Y, Wan C C. Ind Eng Chem Res, 1991, 30: 1293

    71. [71]

      [71] Tsai S J, Cheng S. Catal Today, 1997, 33: 227

    72. [72]

      [72] Zhang C, Zhu Y F. Chem Mater, 2005, 17: 3537

    73. [73]

      [73] Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Environ Sci Technol, 2007, 41: 6234

    74. [74]

      [74] Zhang H, Zong R L, Zhao J C, Zhu Y F. Environ Sci Technol, 2008, 42: 3803

    75. [75]

      [75] Zhang L W, Fu H B, Zhu Y F. Adv Funct Mater, 2008, 18: 2180

    76. [76]

      [76] Xu T G, Zhang L W, Cheng H Y, Zhu Y F. Appl Catal B, 2011, 101: 382

    77. [77]

      [77] Wang P, Huang B B, Qin X Y, Zhang X Y, Dai Y, Wei J Y, Whangbo M H. Angew Chem, Int Ed, 2008, 47: 7931

    78. [78]

      [78] Wang P, Huang B B, Zhang X Y, Qin X Y, Jin H, Dai Y, Wang Z Y, Wei J Y, Zhan J, Wang S Y, Wang J P, Whangbo M H. Chem Eur J, 2009, 15: 1821

    79. [79]

      [79] Chen X B, Liu L, Yu P Y, Mao S S. Science, 2011, 331: 746

    80. [80]

      [80] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem, Int Ed, 2008, 47: 1766

    81. [81]

      [81] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. J Am Chem Soc, 2008, 130: 7176

    82. [82]

      [82] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. J Catal, 2009, 266: 165

    83. [83]

      [83] Xiang Q J, Yu J G, Jaroniec M. J Am Chem Soc, 2012, 134: 6575

    84. [84]

      [84] Lv X J, Zhou S X, Zhang C, Chang H X, Chen Y, Fu W F. J Mater Chem, 2012, 22: 18542

    85. [85]

      [85] Wu C P, Zhou Y, Zou Zh G. Chin J Catal (吴聪萍, 周勇, 邹志刚. 催化学报), 2011, 32: 1565

    86. [86]

      [86] Tseng I H, Chang W C, Wu J C S. Appl Catal B, 2002, 37: 37

    87. [87]

      [87] Tseng I H, Chang W C, Chou H Y. J Catal, 2004, 221: 432

    88. [88]

      [88] Chen S Zh, Zhong Sh H, Xiao X F. Chin J Catal (陈崧哲, 钟顺和, 肖秀芬. 催化学报), 2003, 24: 67

    89. [89]

      [89] Mei Ch S, Zhong Sh H. Chin J Catal (梅长松, 钟顺和. 催化学报), 2004, 25: 937

    90. [90]

      [90] Liu Q, Zhou Y, Kou J H, Chen X Y, Tian Z P, Gao J, Yan S C, Zou Z G. J Am Chem Soc, 2010, 132: 14385

    91. [91]

      [91] Liu Q, Zhou Y, Tian Z P, Chen X Y, Gao J, Zou Z G. J Mater Chem, 2012, 22: 2033

    92. [92]

      [92] Yan S C, Wan L J, Li Z S, Zou Z G. Chem Commun, 2011, 47: 5632

    93. [93]

      [93] Yan S C, Ouyang S X, Gao J, Yang M, Feng J Y, Fan X X, Wan L J, Li Z S, Ye J H, Zhou Y, Zou Z G. Angew Chem, Int Ed, 2010, 49: 6400

    94. [94]

      [94] Yan S C, Yu H, Wang N Y, Li Z S, Zou Z G. Chem Commun, 2012, 48: 1048

    95. [95]

      [95] Zhang M, Chen C C, Ma W H, Zhao J C. Angew Chem, Int Ed, 2008, 47: 9730

    96. [96]

      [96] Wang Q, Zhang M, Chen C C, Ma W H, Zhao J C. Angew Chem, Int Ed, 2010, 49: 7976

    97. [97]

      [97] Zhang Y H, Tang Z R, Fu X Z, Xu Y J. ACS Nano, 2011, 5: 7426

    98. [98]

      [98] Zhang N, Zhang Y H, Pan X Y, Yang M Q, Xu Y J. J Phys Chem C, 2012, 116: 18023

    99. [99]

      [99] Lang X J, Ji H W, Chen C C, Ma W H, Zhao J C. Angew Chem, Int Ed, 2011, 50: 3934

    100. [100]

      [100] Lang X J, Ma W H, Zhao Y B, Chen C C, Ji H W, Zhao J C. Chem Eur J, 2012, 18: 2624

    101. [101]

      [101] Tao Y T, Yeh W L, Tu C L,Chow Y L. J Mol Catal, 1991, 67: 105

    102. [102]

      [102] Li X Y, Kutal C. J Mater Sci Lett, 2002, 21: 1525

    103. [103]

      [103] Huang H Y, Zhou J H, Liu H L, Zhou Y H, Feng Y Y. J Hazard Mater, 2010, 178: 994

    104. [104]

      [104] Lu H Q, Zho J H, Li L, Gong L M, Zheng J F, Zhang L X,Wang Z J, Zhang J, Zhu Z P. Energy Environ Sci, 2011, 4: 3384

    105. [105]

      [105] Chen C C, Ma W H, Zhao J C. Chem Soc Rev, 2010, 39: 4206

    106. [106]

      [106] Wu T X, Liu G M, Zhao J C, Hidaka H, Serpone N. J Phys Chem B, 1998, 102: 5845

    107. [107]

      [107] Wu T X, Lin T, Zhao J C, Hidaka H, Serpone N. Environ Sci Technol, 1999, 33: 1379

    108. [108]

      [108] Zhang M, Wang Q, Chen C C, Zang L, Ma W H, Zhao J C. Angew Chem Int Ed, 2009, 48: 6081

    109. [109]

      [109] Shi J Y, Chen J, Feng Z C, Chen T, Lian Y X, Wang X L, Li C. J Phys Chem C, 2007, 111: 693

    110. [110]

      [110] Chen T, Feng Z C, Wu G P, Shi J Y, Ma G J, Ying P L, Li C. J Phys Chem C, 2007, 111: 8005

    111. [111]

      [111] Zhang J, Zhang Y P, Lei Y K, Pan C X. Catal Sci Technol, 2011, 1: 273

    112. [112]

      [112] Wang Y H, Huang F, Pan D M, Li B, Chen D G, Lin W W, Chen X Y, Li R F, Lin Z. Chem Commun, 2009, 44: 6783

    113. [113]

      [113] Guo Q, Xu C B, Ren Z F, Yang W S, Ma Z B, Dai D X, Fan H J, Minton T K, Yang X M. J Am Chem Soc, 2012, 134: 13366

    114. [114]

      [114] Li Y F, Liu Z P, Liu L L, Gao W G. J Am Chem Soc, 2010, 132: 13008

    115. [115]

      [115] Li Y F, Liu Z P. J Am Chem Soc, 2011, 133: 15743

  • 加载中
    1. [1]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    13. [13]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(0)
  • Abstract views(512)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return