Citation: LI Bing, TIAN Peng, QI Yue, ZHANG Lin, XU Shutao, SU Xiong, FAN Dong, LIU Zhongmin. Study of crystallization process of SAPO-11 molecular sieve[J]. Chinese Journal of Catalysis, ;2013, 34(3): 593-603. doi: 10.1016/S1872-2067(12)60542-7 shu

Study of crystallization process of SAPO-11 molecular sieve

  • Corresponding author: LIU Zhongmin, 
  • Received Date: 21 November 2012
    Available Online: 30 December 2012

  • The crystallization process of SAPO-11 was studied using a combination of X-ray diffraction, scanning electron microscopy, X-ray fluorescence, nuclear magnetic resonance, and X-ray photoelectron spectroscopy. In the initial stage of crystallization, SAPO-11 was formed along with an unknown crystalline material composed of Si-P-Al. As crystallization evolved, the crystalline material dissolved. The SAPO-11 formation rate increased greatly, which is characteristic of fast crystallization. After 2.33 h, the relative crystallinity of SAPO-11 reached ~100% and remained at a high level until crystallization was complete. Si was incorporated into the SAPO-11 framework from the initial stage of crystallization. The Si content of the solid samples increased with crystallization time. Most of the Si atoms existed as Si islands in the SAPO-11 framework, resulting in the presence of multiple coordination environments, i.e., Si(nAl, (4-n)Si), n=0-4. X-ray photoelectron spectroscopy analysis revealed Si enrichment on the external surfaces of the SAPO-11 crystals. Based on the experimental results, the distribution of Si in the crystals is not uniform, showing an increasing trend from the core to the surface.
  • 加载中
    1. [1]

      [1] Lok B M, Messina C A, Patton R L, Gajek R T, Cannan T R, Flanigen E M. USPatent4440871. 1984

    2. [2]

      [2] Zhang Sh Zh, Chen Sh L, Dong P, Yuan G M, Xu K Q. Appl Catal A, 2007, 332: 46

    3. [3]

      [3] Luo H J, Wu H J, Wu H Y, Zhang Y Y, Wang Y J. Ind Catal (罗洪君,吴红姣,吴红玉,张莹莹,汪颖军. 工业催化), 2011, 19(1): 16

    4. [4]

      [4] Wang Y J,Li X H,Liu Ch Sh, Jin L L.Ind Catal (汪颖军,李小辉,刘成双,靳丽丽. 工业催化),2010,18(3): 1

    5. [5]

      [5] Tian Zh J, Liang D B, Lin L W. Chin J Catal (田志坚, 梁东白, 林励吾. 催化学报), 2009, 30: 705

    6. [6]

      [6] Wang Zh M, Yan Z F. J Fuel Chem Technol (汪哲明, 阎子峰. 燃料化学学报), 2003, 31: 360

    7. [7]

      [7] Liu Y M, Zhang F M, Shu X T. Acta Petrol Sin (Petrol Proc Sect) (刘月明, 张凤美, 舒兴田. 石油学报(石油加工)), 2002, 18(6): 26

    8. [8]

      [8] Liu P, Ren J, Sun Y H. Acta Petrol Sin (Petrol Proc Sect) (刘平, 任杰, 孙予罕. 石油学报(石油加工)), 2008, 24(4): 388

    9. [9]

      [9] Zhang Sh Zh, Chen Sh L, Dong P, Jing X J, Jiang K. Chin J Catal (张胜振, 陈胜利, 董鹏, 井秀娟, 姜凯. 催化学报), 2006, 27: 868

    10. [10]

      [10] Gharibeh M, Tompsett G A, Conner W C. Top Catal, 2008, 49: 157

    11. [11]

      [11] Sinha A K, Seelan S. Appl Catal A, 2004, 270: 245

    12. [12]

      [12] Chen B H, Huang Y N. J Phys Chem C, 2007, 111: 15236

    13. [13]

      [13] Song Ch M, Feng Y, Ma L L. Microporous Mesoporous Mater, 2012, 147: 205

    14. [14]

      [14] Chen B H, Huang Y N. J Am Chem Soc, 2006, 128: 6437

    15. [15]

      [15] Zhang B, Xu J, Fan F T, Guo Q, Tong X Q, Yan W F, Yu J H, Deng F, Li C, Xu R R. Microporous Mesoporous Maters, 2012, 147: 212

    16. [16]

      [16] Cheng T, Xu J, Li X, Li Y, Zhang B, Yan W F, Yu J H, Sun H, Deng F, Xu R R. Microporous Mesoporous Mater, 2012, 152: 190

    17. [17]

      [17] Liu G Y, Tian P, Zhang Y, Li J Zh, Xu L, Meng Sh H, Liu Zh M. Microporous Mesoporous Mater, 2008, 114: 416

    18. [18]

      [18] Huang Y N, Richer R, Kirby C W. JPhys Chem B, 2003, 107: 1326

    19. [19]

      [19] Zhang L, Bates J, Chen D H, Nie H Y, Huang Y N. J Phys Chem C, 2011, 115: 22309

    20. [20]

      [20] Lutz W, Kurzhals R, Sauerbeck S, Toufar H, Buhl J Chr, Gesing T, Altenburg W, Jäger Chr. Microporous Mesoporous Mater, 2010, 132: 31

    21. [21]

      [21] Yan Zh M, Chen B H, Huang Y N. Solid State Nucl Magn Reson, 2009, 35: 49

    22. [22]

      [22] Borade R B, Clearfield A. J Mol Catal, 1994, 88: 249

    23. [23]

      [23] Wang Sh F, Wang Y J, Gao Y, Zhao X Q. Chin J Catal (王淑芳, 王延吉, 高扬, 赵新强. 催化学报), 2010, 31: 637

    24. [24]

      [24] Blasco T, Chica A, Corma A, Murphy W J, Agúndez-Rodriguez J, Pérez-Pariente J. J Catal, 2006, 242: 153

    25. [25]

      [25] Barthomeuf D. J Phys Chem, 1993, 97: 10092

    26. [26]

      [26] Shen W L, Li X, Wei Y X, Tian P, Deng F, Han X W, Bao X H. Microporous Mesoporous Mater, 2012, 158: 19

    27. [27]

      [27] Kikhtyanin O V, Toktarev A V, Ayupov A B, Echevsky G V. Appl Catal A, 2010, 378: 96

    28. [28]

      [28] Akolekar D B, Bhargava S K, Gorman J, Paterson P. Colloids Surf A, 1999, 146: 375

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    4. [4]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    5. [5]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    6. [6]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    9. [9]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    10. [10]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    11. [11]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    14. [14]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    15. [15]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    16. [16]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    17. [17]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    18. [18]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    19. [19]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    20. [20]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(0)
  • Abstract views(585)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return