Citation: ZHANG Wenfei, LIANG Jinhua, LIU Yanqiu, SUN Shoufei, REN Xiaoqian, JIANG Min. Knoevenagel condensation reaction over acid-base bifunctional MgO/HMCM-22 catalysts[J]. Chinese Journal of Catalysis, ;2013, 34(3): 559-566. doi: 10.1016/S1872-2067(11)60493-2 shu

Knoevenagel condensation reaction over acid-base bifunctional MgO/HMCM-22 catalysts

  • Corresponding author: REN Xiaoqian, 
  • Received Date: 30 September 2012
    Available Online: 26 November 2012

    Fund Project: 国家重点基础研究发展计划(973计划, 2009CB724701) (973计划, 2009CB724701) 国家高技术研究发展计划(863计划, 2011AA02A203) (863计划, 2011AA02A203) 江苏省博士后科研资助计划(1001016C). (1001016C)

  • MgO/HMCM-22 catalysts were prepared by impregnation and characterized by X-ray diffraction, N2 physical adsorption-desorption, scanning electron microscopy, Fourier-transform infrared spectroscopy, temperature-programmed desorption of NH3, and temperature-programmed desorption of CO2. The results show that there were no significant structural changes in theMCM-22 zeolite after modification. Increasing the MgO loading increased the strength and content of the base, whereas the strength of the strong acid decreased significantly and the amount of weak acidic sites increased slightly. Knoevenagel condensation reactions were carried out as the probe reactions over the catalysts. Both acidic sites and basic sites significantly promoted the reaction. The conversion of benzaldehyde reached 92.6% under the optimal conditions. The catalytic performance of MgO/HMCM-22 and MgO/NaMCM-22 was better than that of HMCM-22 and MgO. The MgO/HMCM-22 catalysts gave good catalytic performance for Knoevenagel condensation reactions and exhibited obvious acid-base synergetic effects.
  • 加载中
    1. [1]

      [1] Zhang X F, Lai E S M, Martin-Aranda R, Yeung K L. Appl Catal A, 2004, 261: 109

    2. [2]

      [2] Bigi F, Chesini L, Maggi R, Sartori G. J Org Chem, 1999, 64: 1033

    3. [3]

      [3] Parida K M, Rath D. J Mol Catal A, 2009, 310: 93

    4. [4]

      [4] Hein R W, Astle M J, Shelton R J. J Org Chem, 1961, 26: 4874

    5. [5]

      [5] Lan D X, Lin D, Zhao H M, Ma L, Chun Y. Chin J Catal (蓝冬雪, 林丹, 赵会民, 马丽, 淳远. 催化学报), 2011, 32: 1214

    6. [6]

      [6] Shao Y Q, Guan J Q, Wu S J, Liu H, Liu B, Kan Q B. Microporous Mesoporous Mater, 2010, 128: 120

    7. [7]

      [7] Macario A, Giordano G, Onida B, Cocina D, Tagarelli A, Giuffrè A M. Appl Catal A, 2010, 378: 160

    8. [8]

      [8] Vermoortele F, Ameloot R, Vimont A, Serre C, Vos D D. ChemCommun, 2011,47: 1521

    9. [9]

      [9] Hruby S L, Shanks B H. J Catal, 2009, 263: 181

    10. [10]

      [10] Climent M J, Corma A, Iborra S, Velty A. J Mol Catal A,2002, 182-183: 327

    11. [11]

      [11] Peng Y, Wang J Y, Long J, Liu G H. Catal Commun, 2011, 15: 10

    12. [12]

      [12] Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A. J Catal, 2010, 269: 110

    13. [13]

      [13] Keita I, Nao M, Takayuki T, Masato M. Catal Lett, 2011, 141: 877

    14. [14]

      [14] Wang T, Wu G J, Guan N J, Li L D. Microporous Mesoporous Mater, 2012, 148: 184

    15. [15]

      [15] Yu Zh W, Wang Q, Chen L, Deng F. Chin J Catal (喻志武, 王强, 陈雷, 邓风. 催化学报), 2012, 33: 129

    16. [16]

      [16] Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Chem Mater, 2010, 22: 2757

    17. [17]

      [17] Laforge S, Martin D, Guisnet M. Microporous Mesoporous Mater, 2004, 67: 235

    18. [18]

      [18] Wu Y J, Ren X Q, Lu Y D, Wang J. Microporous Mesoporous Mater, 2008, 112: 138

    19. [19]

      [19] Shang Y C, Yang P P, Jia M J, Zhang W X, Wu T H. Catal Commun, 2008, 9: 907

    20. [20]

      [20] Shu Y Y, Ma D, Xu L Y, Xu Y D, Bao X H. Catal Lett, 2000, 70: 67

    21. [21]

      [21] Jain D, Khatri C, Rani A. Fuel Process Technol, 2010, 91: 1015

    22. [22]

      [22] Corma A, Corell C, Fornés V, Kolodziejski W, Pérez-Pariente J. Zeolite, 1995, 15: 576

    23. [23]

      [23] Kumara G S, Saravanamurugan S, Hartmann M, Palanichamy M, Murugesan V. J Mol Catal A, 2007, 272: 38

    24. [24]

      [24] Liu Z Y, Zhu Z B, Wang R Y, Zhu X D. Chin J Catal (刘子玉, 朱子彬, 王仁远, 朱学栋. 催化学报), 2008, 29: 928

    25. [25]

      [25] Pappas G S, Liatsi P, Kartsonakis I A, Danilidis I, Kordas G. J Non-Cryst Solids, 2008, 354: 755

    26. [26]

      [26] Sakthivel A, Komura K, Huang S J, Wu P H, Liu S B, Sasaki Y, Sugi Y. Ind Eng Chem Res, 2010, 49: 65

    27. [27]

      [27] Xu Q L, Li T C, Yan Y J. J Fuel Chem Technol, 2008, 36: 181

    28. [28]

      [28] Xue B, Li Y X, Deng L J. Catal Commun, 2009, 10: 1609

    29. [29]

      [29] Rodriguez I, Sastre G, Corma A, Iborra S. J Catal, 1999, 183: 14

    30. [30]

      [30] Corma A, Fornés V, Martín-Aranda R M, García H, Primo J. Appl Catal, 1990, 59: 237

    31. [31]

      [31] Gupta R, Gupta M, Paul S, Gupta R. Bull Korean Chem Soc, 2009, 30: 2419

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    4. [4]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    5. [5]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    6. [6]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    7. [7]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    8. [8]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    13. [13]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    14. [14]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

Metrics
  • PDF Downloads(0)
  • Abstract views(394)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return