Citation: Si-Qi Teng, Zhi-Guo Jiang, Zhao-Bin Qiu. Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods[J]. Chinese Journal of Polymer Science, ;2020, 38(2): 158-163. doi: 10.1007/s10118-020-2338-5 shu

Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods

  • Two octaisobutyl-polyhedral oligomeric silsesquioxanes (oib-POSS) reinforced biodegradable poly(ε-caprolactone) (PCL) composites were prepared via two different methods, i.e., melt compounding and solution casting, which were named as mPCL/oib-POSS and sPCL/oib-POSS, respectively, in this work. Oib-POSS dispersed finely in both composites; moreover, oib-POSS aggregates were larger in mPCL/oib-POSS than in sPCL/oib-POSS. Despite the different preparation methods, oib-POSS obviously promoted the crystallization of PCL, especially in sPCL/oib-POSS, but did not modify the crystal structure of PCL. The storage moduli of PCL were improved significantly in both composites. PCL/oib-POSS composites with enhanced crystallization behavior and improved dynamic mechanical properties were successfully prepared through both methods; moreover, the solution casting method was more effective than the melt compounding method.
  • 加载中
    1. [1]

      Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217−1256.  doi: 10.1016/j.progpolymsci.2010.04.002

    2. [2]

      Dash, T. K.; Konkimalla, V. B. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: a review. J. Control. Release 2012, 158, 15−33.  doi: 10.1016/j.jconrel.2011.09.064

    3. [3]

      Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003, 24, 2077−2082.  doi: 10.1016/S0142-9612(02)00635-X

    4. [4]

      Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B 2010, 75, 1−18.  doi: 10.1016/j.colsurfb.2009.09.001

    5. [5]

      Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2004, 24, 801−808.

    6. [6]

      Sun, H. F.; Mei, L.; Song, C. X.; Cui, X. M.; Wang, P. Y. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 2006, 27, 1735−1740.  doi: 10.1016/j.biomaterials.2005.09.019

    7. [7]

      Ahmed, J.; Luciano, G.; Schizzi, I.; Arfat, Y. A.; Maggiore, S.; Thai, T. L. A. Non-isothermal crystallization behavior, rheological properties and morphology of poly(ε-caprolactone)/graphene oxide nanosheets composite films. Thermochim. Acta 2018, 659, 96−104.  doi: 10.1016/j.tca.2017.11.009

    8. [8]

      Benhacine, F.; Hadj-Hamou, A. S.; Habi, A. Development of long-term antimicrobial poly(ε-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use. Polym. Bull. 2016, 73, 1207−1227.  doi: 10.1007/s00289-015-1543-9

    9. [9]

      Deng, S.; Ma, J. R.; Guo, Y. L.; Chen, F.; Fu, Q. One-step modification and nanofibrillation of microfibrillated cellulose for simultaneously reinforcing and toughening of poly(ε-caprolactone). Compos. Sci. Technol. 2018, 157, 168−177.  doi: 10.1016/j.compscitech.2017.10.029

    10. [10]

      Fadaie, M.; Mirzaei, E.; Geramizadeh, B.; Asvar, Z. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohyd. Polym. 2018, 199, 628−640.  doi: 10.1016/j.carbpol.2018.07.061

    11. [11]

      Gumede, T. P.; Luyt, A. S.; Hassan, M. K.; Perez-Camargo, R. A.; Tercjak, A.; Muller, A. J. Morphology, nucleation, and isothermal crystallization kinetics of poly(ε-caprolactone) mixed with a polycarbonate/MWCNTs masterbatch. Polymers 2017, 9, 709−734.  doi: 10.3390/polym9120709

    12. [12]

      Kong, J.; Yu, Y.; Pei, X.; Han, C.; Tan, Y.; Dong, L. Polycaprolactone nanocomposite reinforced by bioresource starch-based nanoparticles. Int. J. Biol. Macromol. 2017, 102, 1304−1311.  doi: 10.1016/j.ijbiomac.2017.05.019

    13. [13]

      Saeed, K.; Park, S. Y.; Lee, H. J.; Baek, J. B.; Huh, W. S. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 2006, 47, 8019−8025.  doi: 10.1016/j.polymer.2006.09.012

    14. [14]

      Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev. 2010, 110, 2081−2173.  doi: 10.1021/cr900201r

    15. [15]

      Phillips, S.; Haddad, T.; Tomczak, S. Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr. Opin. Solid State Mater. Sci. 2004, 8, 21−29.  doi: 10.1016/j.cossms.2004.03.002

    16. [16]

      Kuo, S. W.; Chang, F. C. POSS related polymer nanocomposites. Prog. Polym. Sci. 2011, 36, 1649−1696.  doi: 10.1016/j.progpolymsci.2011.05.002

    17. [17]

      Wu, J.; Mather, P. T. POSS polymers: physical properties and biomaterials applications. Polym. Rev. 2009, 49, 25−63.  doi: 10.1080/15583720802656237

    18. [18]

      Guan, W.; Qiu, Z. B. Isothermal crystallization kinetics, morphology, and dynamic mechanical properties of biodegradable poly(ε-caprolactone) and octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind. Eng. Chem. Res. 2012, 51, 3203−3208.  doi: 10.1021/ie202802d

    19. [19]

      Pan, H.; Yu, J.; Qiu, Z. B. Crystallization and morphology studies of biodegradable poly(ε-caprolactone)/polyhedral oligomeric silsesquioxanes nanocomposites. Polym. Eng. Sci. 2011, 51, 2159−2165.  doi: 10.1002/pen.v51.11

    20. [20]

      Liu, W.; He, S.; Zhou, H. Effect of octa(epoxycyclohexyl) POSS on thermal, rheology property, and foaming behavior of PLA composites. J. Appl. Polym. Sci. 2018, 135, 46399.  doi: 10.1002/app.v135.25

    21. [21]

      Yu, J.; Qiu, Z. B. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl. Mater. Interfaces 2011, 3, 890−897.  doi: 10.1021/am1012485

    22. [22]

      Choi, J. H.; Jung, C. H.; Kang, D. W.; Hwang, I. T.; Choi, J. H. Preparation and characterization of crosslinked poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites by electron beam irradiation. Nucl. Instrum. Meth. B 2012, 287, 141−147.  doi: 10.1016/j.nimb.2012.07.006

    23. [23]

      Teng, S. Q.; Jiang, Z. G.; Qiu, Z. B. Effect of different POSS structures on the crystallization behavior and dynamic mechanical properties of biodegradable poly(ethylene succinate). Polymer 2019, 163, 68−73.  doi: 10.1016/j.polymer.2018.12.061

    24. [24]

      Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212−224.  doi: 10.1063/1.1750631

    25. [25]

      Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 1941, 9, 177−184.  doi: 10.1063/1.1750872

    26. [26]

      Wunderlich, B. Macromolecular physics, Vol. 2, Academic Press, New York, 1976.

    27. [27]

      Bassindale, A. R.; Liu, Z.H.; MacKinnon, I. A.; Taylor, P. G.; Yang, Y. X.; Light, M. E.; Horton, P. N.; Hursthouse, M. B. A higher yielding route for T8 silsesquioxane cages and X-ray crystal structures of some novel spherosilicates. Dalton Trans. 2003, 14, 2945−2949.

    28. [28]

      Eastmond, G. Poly(ε-caprolactone) blends. Adv. Polym. Sci. 1999, 149, 59−223.  doi: 10.1007/3-540-48838-3

    29. [29]

      Chen, B. Q.; Sun, K. Poly(ε-caprolactone)/hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym. Test. 2005, 24, 64−70.  doi: 10.1016/j.polymertesting.2004.07.010

    30. [30]

      Chen, B. Q.; Sun, K.; Ren, T. Mechanical and viscoelastic properties of chitin fiber reinforced poly(ε-caprolactone). Eur. Polym. J. 2005, 41, 453−457.  doi: 10.1016/j.eurpolymj.2004.10.015

  • 加载中
    1. [1]

      Yarui Li Huangjie Lu Yingzhe Du Jie Qiu Peng Lin Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562

    2. [2]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    3. [3]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    4. [4]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    5. [5]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    6. [6]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    7. [7]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    8. [8]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    9. [9]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    10. [10]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    11. [11]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    12. [12]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    13. [13]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    14. [14]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    15. [15]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

Metrics
  • PDF Downloads(0)
  • Abstract views(1722)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return