Citation: Matthieu Humbert, Sébastien Norsic, Jean Raynaud, Vincent Monteil. Activity Enhancement of MgCl2-supported Ziegler-Natta Catalysts by Lewis-acid Pre-treatment for Ethylene Polymerization[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 1031-1038. doi: 10.1007/s10118-019-2335-8 shu

Activity Enhancement of MgCl2-supported Ziegler-Natta Catalysts by Lewis-acid Pre-treatment for Ethylene Polymerization

  • Ziegler-Natta precatalysts were synthetized from Lewis-base-modified-MgCl2 supports and treated by various Lewis acids, prior to activation by triethylaluminum, in order to increase their activity in ethylene polymerization. BCl3 provided the highest increase in activity. Interestingly, polymerization results showed no substantial modification of polymer properties, which is consistent with that Lewis acid only promotes the creation of new active sites, after activation by TEA, possessing very similar features to the original ones achievable with conventional precatalysts (i.e. without Lewis-acid treatment).
  • 加载中
    1. [1]

      Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Polymerisation von Äthylen und Anderen Olefinen. Angew. Chem. 1955, 67(16), 426-426.

    2. [2]

      Natta, G. Macromolecular chemistry: From sereospecific polymerization to asymmetric autocatalytic synthesis of macromolecules. Science 1965, 147, 261-272.  doi: 10.1126/science.147.3655.261

    3. [3]

      Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. Crystalline high polymers of α-olefins. J. Am. Chem. Soc. 1955, 77(6).

    4. [4]

      Kashiwa, N. The discovery and progress of MgCl2-supported TiCl4 catalysts. J. Polym. Sci., Part A: Polym. Chem. 2004, 42(1), 1-8.  doi: 10.1002/(ISSN)1099-0518

    5. [5]

      Böhm, L. L. in Polyolefins: 50 Years after Ziegler and Natta I. Kaminsky, W., Ed., Springer Berlin Heidelberg: Berlin, Heidelberg, 2013, 257, pp. 59−79.

    6. [6]

      Moore, E. P. Jr. in Polypropylene handbook: Polymerization, characterization, properties, processing, applications. Hanser Gardner Publications, Munich; New York, Cincinnati, 1996.

    7. [7]

      Grau, E.; Lesage, A.; Norsic, S.; Copéret, C.; Monteil, V.; Sautet, P. Tetrahydrofuran in TiCl4/THF/MgCl2: A non-innocent ligand for supported Ziegler-Natta polymerization catalysts. ACS Catal. 2013, 3(1), 52-56.  doi: 10.1021/cs300764h

    8. [8]

      Kim, I.; Kim, J. H.; Choi, H. K.; Chung, M. C.; Woo, S. I. Comonomer enhancement effect of 1-hexene in ethylene copolymerization catalyzed over MgCl2/THF/TiCl4 catalysts. J. Appl. Polym. Sci. 1993, 48(4), 721-730.  doi: 10.1002/app.1993.070480414

    9. [9]

      Czaja, K.; Białek, M. Microstructure of ethylene-1-hexene and ethylene-1-octene copolymers obtained over Ziegler-Natta catalysts supported on MgCl2(THF)2. Polymer 2001, 42(6), 2289-2297.  doi: 10.1016/S0032-3861(00)00621-2

    10. [10]

      Sobota, P. Metal-assembled compounds: Precursors of polymerization catalysts and new materials. Coord. Chem. Rev. 2004, 248(11), 1047-1060.

    11. [11]

      Seenivasan, K.; Sommazzi, A.; Bonino, F.; Bordiga, S.; Groppo, E. Spectroscopic investigation of heterogeneous Ziegler-Natta catalysts: Ti and Mg chloride tetrahydrofuranates, their interaction compound, and the role of the activator. Chem. Eur. J. 2011, 17(31), 8648-8656.  doi: 10.1002/chem.201100804

    12. [12]

      Pirinen, S.; Koshevoy, I. O.; Denifl, P.; Pakkanen, T. T. A Single-crystal model for MgCl2-electron donor support materials: [Mg3Cl5(THF)4Bu]2(Bu = n-Butyl). Organometallics 2013, 32(15), 4208-4213.  doi: 10.1021/om400407p

    13. [13]

      Pirinen, S.; Jayaratne, K.; Denifl, P.; Pakkanen, T. T. Ziegler-Natta catalysts supported on crystalline and amorphous MgCl2/THF complexes. J. Mol. Catal. A: Chem. 2014, 395, 434-439.  doi: 10.1016/j.molcata.2014.09.013

    14. [14]

      Noto, V. D.; Marigo, A.; Viviani, M.; Marega, C.; Bresadola, S.; Zannetti, R. MgCl2-supported Ziegler-Natta catalysts: Synthesis and X-ray diffraction characterization of some MgCl2-Lewis base adducts. Makromol. Chem. 1992, 193(1), 123-131.  doi: 10.1002/macp.1992.021930112

    15. [15]

      Forte, M. C.; Coutinho, F. M. B. Highly active magnesium chloride supported Ziegler-Natta catalysts with controlled morphology. Eur. Polym. J. 1996, 32(2), 223-231.  doi: 10.1016/0014-3057(95)00124-7

    16. [16]

      Sozzani, P.; Bracco, S.; Comotti, A.; Simonutti, R.; Camurati, I. Stoichiometric compounds of magnesium dichloride with ethanol for the supported Ziegler-Natta catalysis: First recognition and multidimensional MAS NMR study. J. Am. Chem. Soc. 2003, 125(42), 12881-12893.  doi: 10.1021/ja034630n

    17. [17]

      Thushara, K. S.; Mathew, R.; Ajithkumar, T. G.; Rajamohanan, P. R.; Bhaduri, S.; Gopinath, C. S. MgCl2•4(CH3)2CHOH: A new molecular adduct and super active polymerization catalyst support. J. Phys. Chem. C 2009, 113(20), 8556-8559.  doi: 10.1021/jp9026546

    18. [18]

      Malizia, F.; Fait, A.; Cruciani, G. Crystal structures of Ziegler-Natta catalyst supports. Chem. Eur. J. 2011, 17(49), 13892-13897.  doi: 10.1002/chem.v17.49

    19. [19]

      Thushara, K. S.; Gnanakumar, E. S.; Mathew, R.; Ajithkumar, T. G.; Rajamohanan, P. R.; Bhaduri, S.; Gopinath, C. S. MgCl2•4((CH3)2CHCH2OH): A new molecular adduct for the preparation of TiClx/MgCl2 catalyst for olefin polymerization. Dalton Trans. 2012, 41(37), 11311-11318.  doi: 10.1039/c2dt31211e

    20. [20]

      D’Anna, V.; Norsic, S.; Gajan, D.; Sanders, K.; Pell, A. J.; Lesage, A.; Monteil, V.; Copéret, C.; Pintacuda, G.; Sautet, P. Structural characterization of the EtOH-TiCl4-MgCl2 Ziegler-Natta precatalyst. J. Phys. Chem. C 2016, 120, 18075.  doi: 10.1021/acs.jpcc.6b05313

    21. [21]

      Credendino, R.; Liguori, D.; Fan, Z.; Morini, G.; Cavallo, L. Toward a unified model explaining heterogeneous Ziegler-Natta catalysis. ACS Catal. 2015, 5(9), 5431-5435.  doi: 10.1021/acscatal.5b01076

    22. [22]

      Blaakmeer, E. S. (Merijn); Antinucci, G.; Busico, V.; van Eck, E. R. H.; Kentgens, A. P. M. Solid-state NMR investigations of MgCl2 catalyst support. J. Phys. Chem. C 2016, 120(11), 6063-6074.  doi: 10.1021/acs.jpcc.5b12606

    23. [23]

      Philippaerts, A.; Ensinck, R.; Baulu, N.; Cordier, A.; Woike, K.; Berthoud, R.; De Cremer, G.; Severn, J. R. Influence of the particle size of the MgCl2 support on the performance of Ziegler catalysts in the polymerization of ethylene to ultra‐high molecular weight polyethylene and the resulting polymer properties. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2679.  doi: 10.1002/pola.v55.16

    24. [24]

      Ribour, D.; Monteil, V.; Spitz, R. Detitanation of MgCl2‐supported Ziegler‐Natta Catalysts for the Study of Active Sites Organization. J. Polym. Sci., Part A: Polym. Chem. 2008, 46(16), 5461-5470.  doi: 10.1002/pola.v46:16

    25. [25]

      Ribour, D.; Monteil, V.; Spitz, R. Strong activation of MgCl2-supported Ziegler-Natta catalysts by treatments with BCl3: Evidence and application of the " cluster” model of active sites. J. Polym. Sci. Part A: Polym. Chem. 2009, 47(21), 5784-5791.  doi: 10.1002/pola.v47:21

    26. [26]

      Ribour, D.; Spitz, R.; Monteil, V. Modifications of the active sites distribution in the Ziegler-Natta polymerization of propylene using Lewis acids. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2631-2635.  doi: 10.1002/pola.v48:12

    27. [27]

      Kobayashi, S.; Busujima, T.; Nagayama, S. A novel classification of Lewis acids on the basis of activity and selectivity. Chem. Eur. J. 2000, 6(19), 3491-3494.  doi: 10.1002/1521-3765(20001002)6:19<3491::AID-CHEM3491>3.3.CO;2-G

    28. [28]

      Hilt, G.; Pünner, F.; Möbus, J.; Naseri, V.; Bohn, M. A. A Lewis acidity scale in relation to rate constants of Lewis acid catalyzed organic reactions. Eur. J. Org. Chem. 2011, 5962-5966.

    29. [29]

      Soares, J. B. P.; McKenna, T. F. L. in Polyolefin reaction engineering, first edition, Wiley-VCH Verlag GmbH & Co., 2012, p.163.

    30. [30]

      Kissin, Y. V. Main kinetic features of ethylene polymerization reactions with heterogeneous Ziegler-Natta catalysts in the light of a multicenter reaction mechanism. J. Polym. Sci., Part A: Polym. Chem. 2001, 39(10), 1681-1695.  doi: 10.1002/(ISSN)1099-0518

  • 加载中
    1. [1]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    4. [4]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    5. [5]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    6. [6]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    7. [7]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    8. [8]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    9. [9]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    10. [10]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    11. [11]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    12. [12]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    13. [13]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    14. [14]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    15. [15]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    16. [16]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    17. [17]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    18. [18]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    19. [19]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    20. [20]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

Metrics
  • PDF Downloads(0)
  • Abstract views(846)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return