Citation: Hong-Peng Han, Yi-Hu Song, Qiang Zheng. Rheological and Interfacial Properties of Colloidal Electrolytes[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 1039-1044. doi: 10.1007/s10118-019-2334-9 shu

Rheological and Interfacial Properties of Colloidal Electrolytes

  • Electric conductivity and rheological responses of colloidal electrolytes consisting of lithium bis(trifluoromethanesulfon) imide, polyethylene glycol (PEG) oligomer, and fumed silica have been investigated. Incorporating silica could improve ionic conductivity of the electrolytes at the same lithium/oxygen ratios. The colloidal electrolytes demonstrate a sol to gel transition with increasing silica content while they exhibit shear thickening behaviors during steady flow at intermediate range of strain rate. The presence of lithium salt, on the one hand, could lower the crystallinity of PEG or forbid the crystallization and on the other hand, interferes the chain adsorption on the surface of silica. Furthermore, lithium salt strongly retards the segmental relaxation of PEG in the colloidal electrolytes.
  • 加载中
    1. [1]

      Feuillade, G.; Perche, P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Elec. 1975, 5(1), 63-69.  doi: 10.1007/BF00625960

    2. [2]

      Baskoro, F.; Wong, H. Q.; Yen, H. J. Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery. ACS Appl. Energy Mater. 2019, 2(6), 3937-3971.  doi: 10.1021/acsaem.9b00295

    3. [3]

      Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4(6), eaas9820.  doi: 10.1126/sciadv.aas9820

    4. [4]

      Huang, P. F.; Wang, Q. S.; Li, K.; Ping, P.; Sun, J. H. The combustion behavior of large scale lithium titanate battery. Sci. Rep. 2015, 5, 7788-7799.  doi: 10.1038/srep07788

    5. [5]

      Lyu, Y. F.; Zhang, Z. J.; Liu, C.; Geng, Z.; Gao, L. C.; Chen, Q. Random binary brush architecture enhances both ionic conductivity and mechanical strength at room temperature. Chinese J. Polym. Sci. 2018, 36(1), 78-84.  doi: 10.1007/s10118-018-2016-z

    6. [6]

      Santhosha, A. L.; Bhattacharyya, A. J. A few case studies on the correlation of particle network and its stability on the ionic conductivity of solid-liquid composite electrolytes. J. Phys. Chem. B 2015, 119(33), 11317-11325.

    7. [7]

      Pfaffenhuber, C.; Göbel, M.; Popovic, J.; Maier, J. Soggy-sand electrolytes: status and perspectives. Phys. Chem. Chem. Phys. 2013, 15(42), 18318-18335.  doi: 10.1039/c3cp53124d

    8. [8]

      Song, J. Y.; Wang, Y. Y.; Wan, C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 1999, 77(2), 183-197.  doi: 10.1016/S0378-7753(98)00193-1

    9. [9]

      Lee, Y. S.; Lee, J. H.; Choi, J. A.; Yoon, W. Y.; Kim, D. W. Composite polymer electrolytes: Cycling characteristics of lithium powder polymer batteries assembled with composite gel polymer electrolytes and lithium powder anode. Adv. Funct. Mater. 2013, 23(8), 917-917.  doi: 10.1002/adfm.v23.8

    10. [10]

      Fan, J.; Raghavan, S. R.; Yu, X. Y.; Khan, S. A.; Fedkiw, P. S.; Hou, J.; Baker, G. L. Composite polymer electrolytes using surface-modified fumed silicas: Conductivity and rheology. Solid State Ionics 1998, 111(1-2), 117-123.  doi: 10.1016/S0167-2738(98)00151-9

    11. [11]

      Khan, S. A.; Fedkiw, P. S.; Baker, G. L. Composite polymer electrolytes using fumed silica fillers: synthesis, rheology and electrochemistry. Office Sci. Tech. Inform. Tech. Rep. 1999, 1, 82-95.

    12. [12]

      Raghavan, S. R.; Riley, M. W.; Fedkiw, P. S.; Khan, S. A. Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica: Dynamic rheology and microstructure. Chem. Mater. 1998, 10(1), 244-251.  doi: 10.1021/cm970406j

    13. [13]

      Fan, J.; Fedkiw, P. S. Composite electrolytes prepared from fumed silica, polyethylene oxide oligomers, and lithium salk. J. Electrochem. Soc. 1997, 144(2), 399-408.  doi: 10.1149/1.1837423

    14. [14]

      Walls, H. J.; Zhou, J.; Yerian, J. A.; Fedkiw, P. S.; Khan, S. A.; Stowe, M. K.; Baker, G. L. Fumed silica-based composite polymer electrolytes: Synthesis, rheology, and electrochemistry. J. Power Sources 2000, 89(2), 156-162.  doi: 10.1016/S0378-7753(00)00424-9

    15. [15]

      Li, Y. X.; Fedkiw, P. S.; Khan, S. A. Lithium/V6O13 cells using silica nanoparticle-based composite electrolyte. Electrochim. Acta 2002, 47(24), 3853-3861.  doi: 10.1016/S0013-4686(02)00326-2

    16. [16]

      Liu, K. W.; Cheng, C. F.; Zhou, L. Y.; Zou, F.; Liang, W. F.; Wang, M. Y.; Wang, M. Y.; Zhu, Y. A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries. J. Power Sources 2019, 423, 297-304.  doi: 10.1016/j.jpowsour.2019.03.056

    17. [17]

      Ye, Y. L.; Xiao, H.; Reaves, K.; McCulloch, B.; Mike, J. F.; Lutkenhaus, J. L. Effect of nanorod aspect ratio on shear thickening electrolytes for safety-enhanced batteries. ACS Appl. Nano Mater. 2018, 1(6), 2774-2784.  doi: 10.1021/acsanm.8b00457

    18. [18]

      Shen, B. H.; Armstrong, B. L.; Doucet, M.; Heroux, L.; Browning, J. F.; Agamalian, M.; Tenhaeff, W. E.; Veith, G. M. Shear thickening electrolyte built from sterically stabilized colloidal particles. ACS Appl. Mater. Interfaces 2018, 10(11), 9424-9434.  doi: 10.1021/acsami.7b19441

    19. [19]

      Veith, G. M.; Armstrong, B. L.; Wang, H.; Kalnaus, S.; Tenhaeff, W. E.; Patterson, M. L. Shear thickening electrolytes for high impact resistant batteries. ACS Energy Lett. 2017, 2(9), 2084-2088.  doi: 10.1021/acsenergylett.7b00511

    20. [20]

      Ding, J.; Tian, T. F.; Meng, Q.; Guo, Z. P.; Li, W. H.; Zhang, P.; Ciacchi, F. T.; Huang, J.; Yang, W. R. Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection. Sci. Rep. 2013, 3(8), 2485.

    21. [21]

      Pfaffenhuber, C.; Sörgel, S.; Weichert, K.; Bele, M.; Mundinger, T.; Gobel, M.; Maier, J. In situ recording of particle network formation in liquids by ion conductivity measurements. J. Am. Chem. Soc. 2011, 133(37), 14514-14517.  doi: 10.1021/ja205287d

    22. [22]

      Vélez, J. F.; Aparicio, M.; Mosa, J. Effect of lithium salt in nanostructured silica-polyethylene glycol solid electrolytes for Li-ion battery applications. J. Phys. Chem. C 2016, 120(40), 22852-22864.  doi: 10.1021/acs.jpcc.6b07181

    23. [23]

      Jarosik, A.; Traub, U.; Maier, J.; Bunde, A. Ion conducting particle networks in liquids: Modeling of network percolation and stability. Phys. Chem. Chem. Phys. 2011, 13(7), 2663-2666.  doi: 10.1039/C0CP01870H

    24. [24]

      Das, S. K.; Bhattacharyya, A. J. Oxide particle surface chemistry and ion transport in " soggy sand” electrolytes. J. Phys. Chem. C 2009, 113(16), 6699-6705.  doi: 10.1021/jp810761e

    25. [25]

      Zhou, H.; Fedkiw, P. S. Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides. Solid State Ionics 2004, 166(3), 275-293.

    26. [26]

      Bhattacharyya, A. J.; Maier, J.; Bock, R.; Lange, F. F. New class of soft matter electrolytes obtained via heterogeneous doping: Percolation effects in " soggy sand” electrolytes. Solid State Ionics 2004, 177(26), 2565-2568.

    27. [27]

      Bhattacharyya, A. J.; Maier, J. Second phase effects on the conductivity of non-aqueous salt solutions: "Soggy sand electrolytes". Adv. Mater. 2004, 16(9-10), 811-814.

    28. [28]

      Kumar, B.; Rodrigues, S. J. Ionic conductivity of colloidal electrolytes. Solid State Ionics 2004, 167(1), 91-97.

    29. [29]

      Zhang, Q. X.; Wu, C.; Song, H.; Zheng, Q. Rheology of fumed silica/polypropylene glycol dispersions. Polymer 2018, 148, 400-406.  doi: 10.1016/j.polymer.2018.06.051

    30. [30]

      Zheng, Z.; Song, Y.; Yang, R.; Zheng, Q. Direct evidence for percolation of immobilized polymer layer around nanoparticles accounting for sol-gel transition in fumed silica dispersions. Langmuir 2015, 31(50), 13478-13487.  doi: 10.1021/acs.langmuir.5b03899

    31. [31]

      Zheng, Z.; Song, Y.; Xu, H.; Zheng Q. Thickening of the immobilized polymer layer using trace amount of amine and its role in promoting gelation of colloidal nanocomposites. Macromolecules 2015, 48(24), 9015-9023.  doi: 10.1021/acs.macromol.5b02004

    32. [32]

      Ma, T.; Yang, R.; Zheng, Z.; Song, Y. Rheology of fumed silica/polydimethylsiloxane suspensions. J. Rheol. 2017, 61(2), 205-215.  doi: 10.1122/1.4973974

    33. [33]

      Ma, F.; Xu, B.; Song, Y.; Zheng, Q. Influence of molecular weight on molecular dynamics and dynamic rheology of polypropylene glycol filled with silica. RSC Adv. 2018, 8(56), 31972-31978.  doi: 10.1039/C8RA04497J

    34. [34]

      Mathias, J.; Wannemacher, G. Basic characteristics and applications of aerosil: 30. The chemistry and physics of the aerosil Surface. J. Colloid Interf. Sci. 1988, 125(1), 61-68.  doi: 10.1016/0021-9797(88)90054-9

    35. [35]

      Raghavan, S. R.; Walls, H. J.; Khan, S. A. Rheology of silica dispersions in organic liquids:  New evidence for solvation forces dictated by hydrogen bonding. Langmuir 2000, 16(21), 7920-7930.  doi: 10.1021/la991548q

    36. [36]

      Napolitano, S.; Capponi, S.; Vanroy, B. Glassy dynamics of soft matter under 1D confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur. Phys. J. E 2013, 36(6), 61-97.  doi: 10.1140/epje/i2013-13061-8

    37. [37]

      Wang, C. Q.; Huang, Y. H.; Liao, B.; Zhao, S. L.; Lin, G.; Cong, G. M. Effects of the conductivity of sulfonated poly(phenylene oxide) lithium by the complexation of poly(ethylene oxide). Polym. Adv. Tech. 2015, 7(8), 697-700.

    38. [38]

      Di Noto, V.; Münchow, V.; Vittadello, M.; Collet, J. C.; Lavina, S. Synthesis and characterization of lithium and magnesium complexes based on [EDTA][PEG400]2 and [EDTA]3[PEG400]7. Macromol. Chem. Phys. 2002, 203(9), 1211–1227.  doi: 10.1002/1521-3935(200206)203:9<1211::AID-MACP1211>3.0.CO;2-#

    39. [39]

      Barnes, H. Shear‐thickening ("dilatancy") in suspensions of nonaggregating solid particles dispersed in newtonian liquids. J. Rheol. 1989, 33(2), 329-366.  doi: 10.1122/1.550017

    40. [40]

      Brown, E.; Jaeger, H. M. Dynamic jamming point for shear thickening suspensions. Phys. Rev. Lett. 2009, 103(8), 086001.  doi: 10.1103/PhysRevLett.103.086001

    41. [41]

      Fall, A.; Bertrand, F.; Ovarlez,G.; Bonn, D. Shear thickening of cornstarch suspensions. J. Rheol. 2012, 56(3), 145-150.

    42. [42]

      Saito, Y.; Hirose, Y.; Otsubo, Y. Shear-induced reversible gelation of nanoparticle suspensions flocculated by poly(ethylene oxide). Colloid. Surf. A: Physicochem. Eng. Aspects 2011, 384(1), 40-46.

    43. [43]

      Zheng, Z.; Song, Y.; Wang, X.; Zheng, Q. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses J. Rheol. 2015, 59(4), 971-993.  doi: 10.1122/1.4922010

    44. [44]

      Boersma, W. H.; Laven, J.; Stein, H. N. Shear thickening (dilatancy) in concentrated dispersions. AICHE J. 1990, 36(3), 321-332.  doi: 10.1002/aic.v36:3

    45. [45]

      Wagner, N. J.; Brady, J. F. Shear thickening in colloidal dispersions. Phys. Today 2009, 62(10), 27-32.  doi: 10.1063/1.3248476

    46. [46]

      Cheng, X.; Mccoy, J. H.; Israelachvili, J. N.; Cohen, I. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 2011, 333(6047), 1276-1279.  doi: 10.1126/science.1207032

    47. [47]

      Brown, E.; Forman, N. A.; Orellana, C. S.; Zhang, H. J.; Maynor, B. W.; Betts, D. E.; DeSimone, J.M.; Jaeger, H. M. Generality of shear thickening in dense suspensions. Nat. Mater. 2010, 9(3), 220-224.  doi: 10.1038/nmat2627

    48. [48]

      Waitukaitis, S. R.; Jaeger, H. M. Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 2012, 487(7406), 205-209.  doi: 10.1038/nature11187

    49. [49]

      Xu, B.; Song, Y.; Zheng, Q. Molecular relaxation and rheological behaviors of fumed silica/low-molecular weight polyethylene glycol suspensions. Acta Polymerica Sinica (in Chinese) 2017, 11, 1832-1840.

    50. [50]

      Nordström, J.; Aguilera, L.; Matic, A. Effect of lithium salt on the stability of dispersions of fumed silica in the ionic liquid BMImBF4. Langmuir 2012, 28(9), 4080-4085.  doi: 10.1021/la204555g

    51. [51]

      Heinrich, G.; Klüppel, M.; Vilgis, T. A. Reinforcement of elastomers. Curr. Opin. Solid Struct. Mater. 2002, 6(3), 195-203.  doi: 10.1016/S1359-0286(02)00030-X

    52. [52]

      Zhu, Z. Y.; Thompson, T.; Wang, S. Q.; von Meerwall, E. D.; Halasa, A. Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 2005, 38(21), 8816-8824.  doi: 10.1021/ma050922s

    53. [53]

      Filippone, G.; Romeo, G.; Acierno, D. Viscoelasticity and structure of polystyrene/fumed silica nanocomposites: Filler network and hydrodynamic contributions. Langmuir 2010, 26(4), 2714-2720.  doi: 10.1021/la902755r

    54. [54]

      Bailly, M.; Kontopoulou, M.; El Mabrouk, K. Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites. Polymer 2010, 51(23), 5506-5515.  doi: 10.1016/j.polymer.2010.09.051

    55. [55]

      Wen, Y. H.; Lu, Y. Y.; Dobosz, K. M.; Archer, L. A. Structure, ion transport, and rheology of nanoparticle salts. Macromolecules 2014, 47(13), 4479-4492.  doi: 10.1021/ma5004002

    56. [56]

      Kim, S. Y.; Meyer, H. W.; Saalwächter, K.; Zukoski, C. F. Polymer dynamics in PEG-silica nanocomposites: Effects of polymer molecular weight, temperature and solvent dilution. Macromolecules 2012, 45(10), 4225-4237.  doi: 10.1021/ma300439k

    57. [57]

      Kim, S. Y.; Zukoski, C. F. Molecular weight effects on particle and polymer microstructure in concentrated polymer solutions. Macromolecules 2013, 46(16), 6634-6643.  doi: 10.1021/ma400459c

    58. [58]

      Kwon, N. K.; Park, C. S.; Lee, C. H.; Kim, Y. S.; Zukoski, C. F.; Kim, S. Y. Tunable nanoparticle stability in concentrated polymer solutions on the basis of the temperature dependent solvent quality. Macromolecules 2016, 49(6), 2307-2317.  doi: 10.1021/acs.macromol.5b02798

    59. [59]

      Srivastava, S.; Shin, J. H.; Archer, L. A. Structure and rheology of nanoparticle-polymer suspensions. Soft Matter 2012, 8(15), 4097-4108.  doi: 10.1039/c2sm06889c

    60. [60]

      Zhang, X. X.; Zhang, H.; Wang, X. C.; Hu, L.; Niu, J. J. Crystallization and low temperature heat-storage behavior of PEG. J Tianjin I. Text. Sci. Technol. 1997, 16(3), 11-14.

    61. [61]

      Geiser, V.; Leterrier, Y.; Manson, J. E. Rheological behavior of concentrated hyperbranched polymer/ silica nanocomposite suspensions. Macromolecules 2010, 43(18), 7705-7712.  doi: 10.1021/ma100569c

    62. [62]

      Ruggerone, R.; Geiser, V.; Vacche, S. D.; Leterrier, Y.; Manson, J. E. Immobilized polymer fraction in hyperbranched polymer/silica nanocomposite suspensions. Macromolecules 2010, 43(24), 10490-10497.  doi: 10.1021/ma102074x

    63. [63]

      Boucher, V. M.; Cangialosi, D.; Alegría, A.; Colmenero, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M. Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric Tg depression. Soft Matter 2011, 7(7), 3607-3620.  doi: 10.1039/c0sm01326a

    64. [64]

      Klonos, P.; Panagopoulou, A.; Bokobza, L.; Kyritsis, A.; Peoglos, V.; Pissis, P. Comparative studies on effects of silica and titania nanoparticles on crystallization and complex segmental dynamics in poly(dimethylsiloxane). Polymer 2010, 51(23), 5490-5499.  doi: 10.1016/j.polymer.2010.09.054

    65. [65]

      Gainaru, C.; Böhmer, R. Oligomer-to-polymer transition of poly(propylene glycol) revealed by dielectric normal modes. Macromolecules 2009, 42(20), 7616-7618.  doi: 10.1021/ma901805c

  • 加载中
    1. [1]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    2. [2]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    3. [3]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    4. [4]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    5. [5]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    6. [6]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    7. [7]

      Zhen-Zhen DongJin-Hao ZhangLin ZhuXiao-Zhong FanZhen-Guo LiuYi-Bo YanLong Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773

    8. [8]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    9. [9]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    10. [10]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    11. [11]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    12. [12]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    13. [13]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    14. [14]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    15. [15]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    16. [16]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    17. [17]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    18. [18]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    19. [19]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    20. [20]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

Metrics
  • PDF Downloads(0)
  • Abstract views(797)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return