Citation: Wang Du, De-Teng Zhang, Xue-Mei Wang, Tan-Chen Ren, Chang-You Gao. Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β-Cyclodextrin-modified Cell-resisting Polymer Brushes[J]. Chinese Journal of Polymer Science, ;2020, 38(2): 126-136. doi: 10.1007/s10118-019-2324-y shu

Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β-Cyclodextrin-modified Cell-resisting Polymer Brushes

  • Corresponding author: Chang-You Gao, cygao@zju.edu.cn
  • Received Date: 26 May 2019
    Revised Date: 15 June 2019
    Available Online: 27 September 2019

  • Dynamic control of mesenchymal stem cell (MSC) behaviors on biomaterial surface is critically involved in regulating the cell fate and tissue regeneration. Herein, a stimuli-responsive surface based on host-guest interaction with cell selectivity was developed to regulate migration of MSCs in situ by dynamic display of cell-specific peptides. Azobenzene-grafted MSC-affinitive peptides (EPLQLKM, Azo-E7) were grafted to β-cyclodextran (β-CD)-modified poly(2-hydroxyethyl methacrylate)-b-poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (PHG) brushes, which were prepared by using surface-initiated atom transfer radical polymerization (SI-ATRP). X-ray photoelectron spectroscopy (XPS), quartz crystal microbalance (QCM), and water contact angle were used to characterize their structure and property. Cell adhesion assay showed that the combination effect of resisting property of PHG and MSC-affinity of E7 could promote the selective adhesion of MSCs over other types of cells such as RAW264.7 macrophages and NIH3T3 fibroblasts to some extent. UV-Vis spectroscopy proved that the competing guest molecules, amantadine hydrochloride (Ama), could release Azo-E7 peptides from the CD surface to different extents, and the effect was enhanced when UV irradiation was employed simultaneously. As a result, the decrease of cell adhesion density and migration rate could be achieved in situ. The cell density and migration rate could be reduced by over 40% by adding 20 μmol/L Ama, suggesting that this type of surface is a new platform for dynamic regulation of stem cell behaviors in situ.
  • 加载中
    1. [1]

      Ermis, M.; Antmen, E.; Hasirci, V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact. Mater. 2018, 3, 355−369.  doi: 10.1016/j.bioactmat.2018.05.005

    2. [2]

      Byron, A.; Morgan, M. R.; Humphries, M. J. Adhesion signalling complexes. Curr. Biol. 2010, 20, R1063−R1067.  doi: 10.1016/j.cub.2010.10.059

    3. [3]

      Geiger, B.; Spatz, J. P.; Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Microbiol. 2009, 10, 21−33.  doi: 10.1038/nrm2593

    4. [4]

      Zamani, M.; Prabhakaran, M. P.; Thian, E. S.; Ramakrishna, S. Controlled delivery of stromal derived factor-1α from poly(lactic-co-glycolic acid) core-shell particles to recruit mesenchymal stem cells for cardiac regeneration. J. Colloid Interface Sci. 2015, 451, 144−152.  doi: 10.1016/j.jcis.2015.04.005

    5. [5]

      Yan, C.; Sun, J.; Ding, J. D. Critical areas of cell adhesion on micropatterned surfaces. Biomaterials 2011, 32, 3931−3938.  doi: 10.1016/j.biomaterials.2011.01.078

    6. [6]

      Okuyama, H.; Krishnamachary, B.; Zhou, Y. F.; Nagasawa, H.; Bosch-Marce, M.; Semenza, G. L. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J. Biol. Chem. 2006, 281, 15554−15563.  doi: 10.1074/jbc.M602003200

    7. [7]

      Wu, C. T.; Chang, J.; Zhai, W. Y.; Ni, S. Y.; Wang, J. Y. Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. B 2006, 78B, 47−55.  doi: 10.1002/(ISSN)1552-4981

    8. [8]

      Charras, G.; Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Microbiol. 2014, 15, 813−824.  doi: 10.1038/nrm3897

    9. [9]

      Chan, C. E.; Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 2008, 322, 1687−1691.  doi: 10.1126/science.1163595

    10. [10]

      Shabbir, S. H.; Eisenberg, J. L.; Mrksich, M. An inhibitor of a cell adhesion receptor stimulates cell Migration. Angew. Chem. Int. Ed. 2010, 49, 7706−7709.  doi: 10.1002/anie.v49:42

    11. [11]

      Wu, J. D.; Mao, Z. W.; Gao, C. Y. Controlling the migration behaviors of vascular smooth muscle cells by methoxy poly(ethylene glycol) brushes of different molecular weight and density. Biomaterials 2012, 33, 810−820.  doi: 10.1016/j.biomaterials.2011.10.022

    12. [12]

      Biazar, E.; Khorasani, M. T.; Joupari, M. D. Cell adhesion and surface properties of polystyrene surfaces grafted with poly(N-isopropylacrylamide). Chinese J. Polym Sci. 2013, 31, 1509−1518.  doi: 10.1007/s10118-013-1335-3

    13. [13]

      Cao, Z. Q.; Bian, Q.; Chen, Y.; Liang, F. X.; Wang, G. J. Light-responsive Janus-particle-based coatings for cell capture and release. ACS Macro Lett. 2017, 6, 1124−1128.  doi: 10.1021/acsmacrolett.7b00714

    14. [14]

      Chen, Y. H.; Chang, S. H.; Wang, T. J.; Wang, I.; Young, T. H. Cell fractionation on pH-responsive chitosan surface. Biomaterials 2013, 34, 854−863.  doi: 10.1016/j.biomaterials.2012.10.014

    15. [15]

      Xiao, Y.; Zhou, H. Y.; Xuan, N. X.; Cheng, M.; Rao, Y. F.; Luo, Y.; Wang, B.; Tang, R. Effective and selective cell retention and recovery from whole blood by electroactive thin films. ACS Appl. Mater. Interfaces 2014, 6, 20804−20811.  doi: 10.1021/am505072z

    16. [16]

      Liu, H. Y.; Korc, M.; Lin, C. C. Biomimetic and enzyme-responsive dynamic hydrogels for studying cell-matrix interactions in pancreatic ductal adenocarcinoma. Biomaterials 2018, 160, 24−36.  doi: 10.1016/j.biomaterials.2018.01.012

    17. [17]

      Costa, P.; Gautrot, J. E.; Connelly, J. T. Directing cell migration using micropatterned and dynamically adhesive polymer brushes. Acta Biomater. 2014, 10, 2415−2422.  doi: 10.1016/j.actbio.2014.01.029

    18. [18]

      Boekhoven, J.; Perez, C. M. R.; Sur, S.; Worthy, A.; Stupp, S. I. Dynamic display of bioactivity through host-guest chemistry. Angew. Chem. Int. Ed. 2013, 52, 12077−12080.  doi: 10.1002/anie.201306278

    19. [19]

      Voskuhl, J.; Sankaran, S.; Jonkheijm, P. Optical control over bioactive ligands at supramolecular surfaces. Chem. Commun. 2014, 50, 15144−15147.  doi: 10.1039/C4CC03184A

    20. [20]

      Gong, Y. H.; Li, C.; Yang, J.; Wang, H. Y.; Zhuo, R. X.; Zhang, X. Z. Photoresponsive "smart template" via host-guest interaction for reversible cell adhesion. Macromolecules 2011, 44, 7499−7502.  doi: 10.1021/ma201676w

    21. [21]

      Deng, J.; Liu, X. Y.; Shi, W. B.; Cheng, C.; He, C.; Zhao, C. S. Light-triggered switching of reversible and alterable biofunctionality via β-cyclodextrin/azobenzene-based host-guest interaction. ACS Macro Lett. 2014, 3, 1130−1133.  doi: 10.1021/mz500568k

    22. [22]

      Bian, Q.; Wang, W.; Wang, S.; Wang, G. Light-triggered specific cancer cell release from cyclodextrin/azobenzene and aptamer-modified substrate. ACS Appl. Mater. Interfaces 2016, 8, 27360−27367.  doi: 10.1021/acsami.6b09734

    23. [23]

      Gu, L. Q.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 1999, 398, 686−690.  doi: 10.1038/19491

    24. [24]

      Cheng, M. J.; Shi, F.; Li, J. S.; Lin, Z. F.; Jiang, C.; Xiao, M.; Zhang, L. Q.; Yang, W. T.; Nishi, T. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating. Adv. Mater. 2014, 26, 3009−3013.  doi: 10.1002/adma.201305177

    25. [25]

      Khan, M.; Yang, J.; Shi, C. C.; Lv, J.; Feng, Y. K.; Zhang, W. C. Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys-Ala-Gly-peptide. Acta Biomater. 2015, 20, 69−81.  doi: 10.1016/j.actbio.2015.03.032

    26. [26]

      Ren, T. C.; Yu, S.; Mao, Z. W.; Gao, C. Y. A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of schwann cells. Biomaterials 2015, 56, 58−67.  doi: 10.1016/j.biomaterials.2015.03.052

    27. [27]

      Ji, Y.; Wei, Y.; Liu, X. S.; Wang, J. L.; Ren, K. F.; Ji, J. Zwitterionic polycarboxybetaine coating functionalized with REDV peptide to improve selectivity for endothelial cells. J. Biomed. Mater. Res. A 2012, 100A, 1387−1397.  doi: 10.1002/jbm.a.v100a.6

    28. [28]

      Zheng, X. W.; Pan, X.; Pang, Q.; Shuai, C. A.; Ma, L.; Gao, C. Y. Selective capture of mesenchymal stem cells over fibroblasts and immune cells on E7-modified collagen substrates under flow circumstances. J. Mater. Chem. B 2018, 6, 165−173.  doi: 10.1039/C7TB02812A

    29. [29]

      Man, Z. T.; Yin, L.; Shao, Z. X.; Zhang, X.; Hu, X. Q.; Zhu, J. X.; Dai, L. H.; Huang, H. J.; Yuan, L.; Zhou, C. Y. The effects of co-delivery of BMSC-affinity peptide and rhTGF-β1 from coaxial electrospun scaffolds on chondrogenic differentiation. Biomaterials 2014, 35, 5250−5260.  doi: 10.1016/j.biomaterials.2014.03.031

    30. [30]

      Shao, Z. X.; Zhang, X.; Pi, Y. B.; Wang, X. K.; Jia, Z. Q.; Zhu, J. X.; Dai, L. H.; Chen, W. Q.; Yin, L.; Chen, H. F. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo. Biomaterials 2012, 33, 3375−3387.  doi: 10.1016/j.biomaterials.2012.01.033

    31. [31]

      Yang, M.; Chu, L. Y.; Wang, H. D.; Xie, R.; Song, H.; Niu, C. H. A thermoresponsive membrane for chiral resolution. Adv. Funct. Mater. 2008, 18, 652−663.  doi: 10.1002/(ISSN)1616-3028

    32. [32]

      Tugulu, S.; Arnold, A.; Sielaff, I.; Johnsson, K.; Klok, H. A. Protein-functionalized polymer brushes. Biomacromolecules 2005, 6, 1602−1607.  doi: 10.1021/bm050016n

    33. [33]

      Ren, T. C.; Mao, Z. W.; Guo, J.; Gao, C. Y. Directional migration of vascular smooth muscle cells guided by a molecule weight gradient of poly(2-hydroxyethyl methacrylate) brushes. Langmuir 2013, 29, 6386−6395.  doi: 10.1021/la4004609

    34. [34]

      Ren, T. C.; Mao, Z. W.; Moya, S. E.; Gao, C. Y. Immobilization of enzymes on 2-hydroxyethyl methacrylate and glycidyl methacrylate copolymer brushes. Chem. Asian J. 2014, 9, 2132−2139.  doi: 10.1002/asia.v9.8

    35. [35]

      Huang, S.; Xu, L. L.; Sun, Y. X.; Wu, T. Y.; Wang, K. X.; Li, G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J. Orthop. Transl. 2015, 3, 26−33.  doi: 10.1016/j.jot.2014.07.005

    36. [36]

      Li, X.; Wang, M. M.; Wang, L.; Shi, X. J.; Xu, Y. J.; Song, B.; Chen, H. Block copolymer modified surfaces for conjugation of biomacromolecules with control of quantity and activity. Langmuir 2013, 29, 1122−1128.  doi: 10.1021/la3044472

    37. [37]

      Yan, S.; Wang, Z. N.; Gao, X. L.; Gao, C. J. Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations. J. Membr. Sci. 2012, 413-414, 38−47.  doi: 10.1016/j.memsci.2012.03.055

    38. [38]

      Zhu, L. J.; Zhu, L. P.; Jiang, J. H.; Yi, Z.; Zhao, Y. F.; Zhu, B. K.; Xu, Y. Y. Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly(2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive. J. Membr. Sci. 2014, 451, 157−168.  doi: 10.1016/j.memsci.2013.09.053

    39. [39]

      Barbey, R.; Klok, H. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Langmuir 2010, 26, 18219−18230.  doi: 10.1021/la102400z

    40. [40]

      Kim, M.; Lee, B.; Yang, K.; Park, J.; Jeon, S.; Um, S. H.; Kim, D.; Im, S. G.; Cho, S. BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials 2013, 34, 7236−7246.  doi: 10.1016/j.biomaterials.2013.06.019

    41. [41]

      Zhou, W. F.; Yang, M.; Zhao, Z.; Li, S. P.; Cheng, Z. Q.; Zhu, J. S. Controlled hierarchical architecture in poly[oligo(ethylene glycol) methacrylate-b-glycidyl methacrylate] brushes for enhanced label-free biosensing. Appl. Surf. Sci. 2018, 450, 236−243.  doi: 10.1016/j.apsusc.2018.04.183

    42. [42]

      Hu, W. H.; Liu, Y. S.; Lu, Z. S.; Li, C. M. Poly[oligo(ethylene glycol) methacrylate-co-glycidyl methacrylate] brush substrate for sensitive surface plasmon resonance imaging protein arrays. Adv. Funct. Mater. 2010, 20, 3497−3503.  doi: 10.1002/adfm.v20:20

    43. [43]

      Lei, Z.; Gao, J. X.; Liu, X.; Liu, D. J.; Wang, Z. X. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) brushes as peptide/protein microarray substrate for improving protein binding and functionality. ACS Appl. Mater. Interfaces 2016, 8, 10174−10182.  doi: 10.1021/acsami.6b01156

    44. [44]

      Wu, S.; Du, W.; Duan, Y. Y.; Zhang, D. T.; Liu, Y. X.; Wu, B. B.; Zou, X. H.; Ouyang, H. W.; Gao, C. Y. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Acta Biomater. 2018, 75, 75−92.  doi: 10.1016/j.actbio.2018.05.046

    45. [45]

      Dehghani, E. S.; Spencer, N. D.; Ramakrishna, S. N.; Benetti, E. M. Crosslinking polymer brushes with ethylene glycol-containing segments: influence on physicochemical and antifouling properties. Langmuir 2016, 32, 10317−10327.  doi: 10.1021/acs.langmuir.6b02958

    46. [46]

      Mandal, J.; Varunprasaath, R. S.; Yan, W.; Divandari, M.; Spencer, N. D.; Dubner, M. In situ monitoring of SI-ATRP throughout multiple reinitiations under flow by means of a quartz crystal microbalance. RSC Adv. 2018, 8, 20048−20055.  doi: 10.1039/C8RA03073A

    47. [47]

      Fuhrmann, I.; Karger-Kocsis, J. Photoinitiated grafting of glycidyl methacrylate and methacrylic acid on ground tire rubber. J. Appl. Polym. Sci. 2003, 89, 1622−1630.  doi: 10.1002/(ISSN)1097-4628

    48. [48]

      Tabata, Y. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface 2009, 63, S311−S324.  doi: 10.1098/rsif.2008.0448.focus

    49. [49]

      Ren, T. C.; Ni, Y. L.; Du, W.; Yu, S.; Mao, Z.; Gao, C. Y. Dual responsive surfaces based on host-guest interaction for dynamic mediation of cell-substrate interaction and cell migration. Adv. Mater. Interfaces 2017, 4, 1500865.  doi: 10.1002/admi.201500865

    50. [50]

      Lauffenburger, D. A.; Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 1996, 84, 359−369.  doi: 10.1016/S0092-8674(00)81280-5

    51. [51]

      Dimilla, P. A.; Stone, J. A.; Quinn, J. A.; Albelda, S. M.; Lauffenburger, D. A. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Bio. 1993, 122, 729−737.  doi: 10.1083/jcb.122.3.729

  • 加载中
    1. [1]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    2. [2]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    3. [3]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    4. [4]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    5. [5]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    6. [6]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    7. [7]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    8. [8]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    9. [9]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    10. [10]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    11. [11]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    12. [12]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    13. [13]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    14. [14]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    15. [15]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    16. [16]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    17. [17]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    18. [18]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    19. [19]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    20. [20]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

Metrics
  • PDF Downloads(0)
  • Abstract views(1659)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return