Citation: Zhen Zhang, Bai-Yu Jiang, Biao Zhang, Zhi-Sheng Fu, Zhi-Qiang Fan. Deactivation Effect Caused by Catalyst-Cocatalyst Pre-contact in Propylene Polymerization with MgCl2-supported Ziegler-Natta Catalyst[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 1023-1030. doi: 10.1007/s10118-019-2319-8 shu

Deactivation Effect Caused by Catalyst-Cocatalyst Pre-contact in Propylene Polymerization with MgCl2-supported Ziegler-Natta Catalyst

  • Corresponding author: Zhi-Qiang Fan, fanzq@zju.edu.cn
  • Received Date: 26 April 2019
    Revised Date: 13 June 2019
    Available Online: 16 August 2019

  • Propylene slurry polymerization with a MgCl2-supported Ziegler-Natta catalyst containing internal electron donor was conducted after different durations of pre-contact of the catalyst with triethylaluminum cocatalyst. The number of active centers ([C*]/[Ti]) was determined by quenching the polymerization with 2-thiophenecarbonyl chloride and measuring sulfur content in the polymer. The pre-contact treatment caused selective deactivation of a part of active centers with low stereoselectivity and much lower activity in the initial stage of polymerization as compared with the polymerization run without the pre-contact stage. The active center concentration and polymerization activity decreased with prolonging of the pre-contact stage. The proportion of stereoselective active centers was increased by prolonging the pre-contact stage, so the isotacticity of produced polypropylene was enhanced. Release of active centers through catalyst particle fragmentation was significantly retarded, and the polymerization rate curve changed from decay type to induction type by the pre-contact treatment. In the induction period both non-stereoselective and stereoselective active centers were released and activated, resulting in gradual reduction of the polymer’s isotacticity in the first 5−10 min of polymerization. Selective deactivation of non-stereoselective active centers also took place in propylene polymerization using the catalyst without pre-contacting with the cocatalyst. In this case, the polymerization rate decayed with time after a short induction period of 2−5 min. Over reduction of the active center precursors with low stereoselectivity by triethylaluminum was considered as the reason for their deactivation during the pre-contact or the polymerization processes.
  • 加载中
    1. [1]

      Kashiwa, N.; Yoshitake, J. The influence of the valence state of titanium in MgCl2-supported titanium catalysts on olefin polymerization. Makromol. Chem. 1984, 185, 1133-1138.  doi: 10.1002/macp.1984.021850606

    2. [2]

      Busico, V.; Corradini, P.; Ferraro, A.; Proto, A. Polymerization of propene in the presence of MgC12-supported Ziegler-Natta catalysts. 3) Catalyst deactivation. Makromol. Chem. 1986, 181, 1125-1130.

    3. [3]

      Yang, C. B.; Hsu, C. C. Effect of catalyst aging on catalyst activity and stereospecificity for MgClz/ethyl benzoate or dioctyl phthalate/TiC14-triethylaluminium for propene polymerization. Macromol. Rapid Commun. 1995, 16, 311-316.  doi: 10.1002/marc.1995.030160413

    4. [4]

      Mori, H.; Hasebe1, K.; Terano, M. Variation in oxidation state of titanium species on MgCl2-supported Ziegler catalyst and its correlation with kinetic behavior for propylene polymerization. Polymer 1999, 40, 1389-1394.  doi: 10.1016/S0032-3861(98)00379-6

    5. [5]

      Potapov, A. G.; Terskikh, V. V.; Zakharov, V. A.; Bukatov, G. D. 27Al NMR MAS study of the surface Al complexes formed in reaction of organoaluminium compounds with supported TiCl4/MgCl2 catalyst. J. Mol. Catal. A: Chem. 1999, 145, 147-152.  doi: 10.1016/S1381-1169(99)00024-2

    6. [6]

      Potapov, A. G.; Terskikh, V. V.; Bukatov, G. D.; Zakharov, V. A. 27Al MAS NMR study of the interaction of supported Ziegler-Natta catalysts with organoaluminium co-catalyst in the presence of donors. J. Mol. Catal. A: Chem. 2000, 158, 457-460.  doi: 10.1016/S1381-1169(00)00124-2

    7. [7]

      Shimizu, F.; Pater, J. T. M.; Van Swaaij, W. P. M.; Weickert, G. Kinetic study of a highly active MgCl2-supported Ziegler-Natta catalyst in liquid pool propylene polymerization. II. The influence of alkyl aluminum and alkoxysilane on catalyst activation and deactivation. J. Appl. Polym. Sci. 2002, 83, 2669-2679.  doi: 10.1002/(ISSN)1097-4628

    8. [8]

      Fregonese, D.; Mortara, S.; Bresadola, S. Ziegler-Natta MgCl2-supported catalysts: Relationship between titanium oxidation states distribution and activity in olefin polymerization. J. Mol. Catal. A: Chem. 2001, 172, 89-95.  doi: 10.1016/S1381-1169(01)00128-5

    9. [9]

      Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M. Specific roles of Al-alkyl cocatalyst in the origin of isospecificity of active sites on donor-free TiCl4/MgCl2 Ziegler-Natta catalyst. Macromol. Chem. Phys. 2002, 203, 2412-2421.  doi: 10.1002/macp.200290022

    10. [10]

      Nitta, T.; Liu, B. P.; Nakatani, H.; Terano, M. Formation, deactivation and transformation of stereospecific active sites on TiCl4/dibutylphthalate/Mg(OEt)2 catalyst induced by short time reaction with Al-alkyl cocatalyst. J. Mol. Catal. A: Chem. 2002, 180, 25-34.  doi: 10.1016/S1381-1169(01)00414-9

    11. [11]

      Murayama, N.; Liu, B. P.; Nakatani, H.; Terano, M. Plausible guard effect on the active sites of heterogeneous Ziegler-Natta catalyst by coordinating monomers and growing polymer chains in the initial stage of propene polymerization. Polym. Int. 2004, 53, 723-727.  doi: 10.1002/(ISSN)1097-0126

    12. [12]

      Al-arifi, S. N. Propylene polymerization using MgCl2/Ethylbenzoate/TiCl4 catalyst: Determination of titanium oxidation states. J. Appl. Polym. Sci. 2004, 93, 56-62.  doi: 10.1002/(ISSN)1097-4628

    13. [13]

      Chumachenko, N. N.; Bukatov, G. D.; Sergeev, S. A.; Zakharov, V. A. State of titanium in supported titanium-magnesium catalysts for propylene polymerization. Kinet. Catal. 2011, 52, 234-241.  doi: 10.1134/S0023158411020042

    14. [14]

      Trischler, H.; Schofberger, W.; Paulik, C. Influence of alkylaluminum co-catalysts on TiCl4 transalkylation and formation of active centers C* in Ziegler-Natta catalysts. Macromol. React. Eng. 2013, 7, 146-154.  doi: 10.1002/mren.v7.3/4

    15. [15]

      Tan, N.; Yu, L. Q.; Tan, Z.; Mao, B. Q. Kinetics of the propylene polymerization with prepolymerization at high temperature using Ziegler-Natta catalyst. J. Appl. Polym. Sci. 2015, 41816.

    16. [16]

      Shen, X. R.; Hu, J.; Fu, Z. S.; Lou, J. Q.; Fan, Z. Q. Counting the number of active centers in MgCl2-supported Ziegler-Natta catalysts by quenching with 2-thiophenecarbonyl chloride and study on the initial kinetics of propylene polymerization. Catal. Commun. 2013, 30, 66-69.  doi: 10.1016/j.catcom.2012.11.001

    17. [17]

      Shen, X. R.; Fu, Z. S.; Hu, J.; Wang, Q.; Fan, Z. Q. Mechanism of propylene polymerization with MgCl2-supported Ziegler-Natta catalysts based on counting of active centers: The role of external electron donor. J. Phys. Chem. C 2013, 117, 15174-15182.  doi: 10.1021/jp404416n

    18. [18]

      Yang, H. R.; Zhang, L. T.; Fu, Z. S.; Fan, Z. Q. Comonomer effects in copolymerization of ethylene and 1-hexene with MgCl2-supported Ziegler-Natta catalysts: New evidences from active center concentration and molecular weight distribution. J. Appl. Polym. Sci. 2015, 132, 41264.

    19. [19]

      Yang, H. R.; Zhang, L. T.; Fu, Z. S.; Fan, Z. Q. Effects of alkylaluminum as cocatalyst on the active center distribution of 1-hexene polymerization with MgCl2-supported Ziegler-Natta catalysts. Catal. Commun. 2015. 62, 104-106.  doi: 10.1016/j.catcom.2015.01.023

    20. [20]

      Guo, Y. T.; Zhang, Z.; Guo, W. Q.; Khan, A.; Fu, Z. S.; Xu, J. T.; Fan, Z. Q. Kinetics and mechanism of metallocene-catalyzed olefin polymerization: Comparison of ethylene, propylene homopolymerizations, and their copolymerization. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 867-875.  doi: 10.1002/pola.v55.5

    21. [21]

      Khan, A.; Guo, Y. T.; Fu, Z. S.; Fan, Z. Q. Kinetics of short-duration ethylene polymerization with MgCl2-supported Ziegler-Natta catalyst: Two-stage initiation evidenced by changes in active center concentration. J. Appl. Polym. Sci. 2017, 134, 45187.  doi: 10.1002/app.v134.33

    22. [22]

      Jiang, B. Y.; Weng, Y. H.; Zhang, S. J.; Zhang, Z.; Fu, Z. S.; Fan, Z. Q. Kinetics and mechanism of ethylene polymerization with TiCl4/MgCl2 model catalysts: Effects of titanium content. J. Catal. 2018. 360, 57-65.  doi: 10.1016/j.jcat.2018.01.008

    23. [23]

      Khan, A.; Guo, Y. T.; Zhang, Z.; Ali, A.; Fu, Z. S.; Fan, Z. Q. Kinetics of short-duration ethylene-propylene copolymerization with MgCl2-supported Ziegler-Natta catalyst: Differentiation of active centers on the external and internal surfaces of the catalyst particles. J. Appl. Polym. Sci. 2018, 135, 46030.  doi: 10.1002/app.46030

    24. [24]

      Jiang, B. Y.; Liu, X. Y.; Weng, Y. H.; Fu, Z. S.; He, A. H.; Fan, Z. Q. Mechanistic Study on Comonomer Effect in Ethylene/1-Hexene Copolymerization with TiCl4/MgCl2 Model Ziegler-Natta Catalysts. J. Catal. 2019, 369, 324-334.  doi: 10.1016/j.jcat.2018.11.034

    25. [25]

      Giannini, U. Polymerization of olefins with high activity catalysts. Makromol. Chem., Suppl. 1981, 5, 216-229.  doi: 10.1002/macp.02.v5:19811+

    26. [26]

      Tait, P. J. T.; Wang S. M. Studies on the polymerization of propylene using high activity Ziegler-Natta catalysts. I: Kinetic models for rate decay in Ziegler-Natta polymerization. British Polymer Journal 1988, 20, 499-508.

    27. [27]

      Jiang, B. Y.; He, F.; Yang, P. J.; Zhang, Z.; Weng, Y. H.; Cheng, Z. M.; Fu, Z. S.; Fan, Z. Q. Enhancing stereoselectivity of propylene polymerization with MgCl2-supported Ziegler-Natta catalysts by electron donor: Strong effects of titanium dispersion state. Catal. Commun. 2019, 121, 38-42.  doi: 10.1016/j.catcom.2018.12.008

    28. [28]

      Weng, Y. H.; Jiang, B. Y.; Fu, Z. S.; Fan, Z. Q. Mechanism of internal and external electron donor effects on propylene polymerization with MgCl2-supported Ziegler-Natta catalyst: New evidences based on active center counting. J. Appl. Polym. Sci. 2018, 135, 46605.  doi: 10.1002/app.v135.32

    29. [29]

      Kakugo, M.; Miyatake, T.; Naito, Y.; Mizunuma, K. Microtacticity distribution of polypropylenes prepared with heterogeneous Ziegler-Natta catalysts. Macromolecules 1988, 21, 314-319.  doi: 10.1021/ma00180a006

    30. [30]

      Xu, J. T.; Feng, L. X.; Yang, S. L.; Yang, Y. Q.; Kong, X. M. Influence of electron donors on the tacticity and the composition distribution of propylene-butene copolymers produced by supported Ziegler-Natta catalysts. Macromolecules 1997, 30, 7655-7660.  doi: 10.1021/ma9706642

    31. [31]

      Xu, J. T.; Feng, L. X.; Yang, S. L.; Yang, Y. Q.; Kong, X. M. Temperature rising elution fractionation of polypropylene produced by heterogeneous Ziegler-Natta catalysts. Eur. Polym. J. 1998, 34, 431-434.  doi: 10.1016/S0014-3057(97)00148-1

    32. [32]

      Tu, S. T.; Fu, Z. S.; Fan, Z. Q. Influence of cocatalyst on the structure and properties of polypropylene/poly(ethylene-co-propylene) in-reactor alloys prepared by MgCl2/TiCl4/diester type Ziegler-Natta catalyst. J. Appl. Polym. Sci. 2012, 124, 5154-5164.

    33. [33]

      Correa, A.; Credendino, R.; Pater, J. T. M.; Morini, G.; Cavallo, L. Theoretical investigation of active sites at the corners of MgCl2 crystallites in supported Ziegler-Natta catalysts Macromolecules 2012, 45, 3695-3701.  doi: 10.1021/ma3001862

    34. [34]

      Credendino, R.; Liguori, D.; Fan, Z. Q.; Morini, G.; Cavallo, L. Toward a unified model explaining heterogeneous Ziegler-Natta catalysis. ACS Catal. 2015, 5, 5431-5435.  doi: 10.1021/acscatal.5b01076

    35. [35]

      Dwivedi, S.; Taniike, T.; Terano, M. Understanding the chemical and physical transformations of a Ziegler-Natta catalyst at the initial stage of polymerization kinetics: The key role of alkylaluminum in the catalyst activation process. Macromol. Chem. Phys. 2014, 215, 1698-1706.  doi: 10.1002/macp.v215.18

    36. [36]

      Yang, P. J.; Fu, Z. S.; Fan, Z. Q. 1-Hexene polymerization with supported Ziegler-Natta catalyst: Correlation between catalyst particle disintegration and active center distribution. Mol. Catal. 2018, 447C, 13-20.  doi: 10.1016/j.mcat.2017.12.040

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    3. [3]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    4. [4]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    5. [5]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    6. [6]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    7. [7]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    8. [8]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    9. [9]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    10. [10]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    11. [11]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    12. [12]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    13. [13]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    14. [14]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    15. [15]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    16. [16]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    17. [17]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    18. [18]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    19. [19]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    20. [20]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

Metrics
  • PDF Downloads(0)
  • Abstract views(906)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return