Citation: Tian-Wen Bai, Xu-Feng Ni, Jun Ling, Zhi-Quan Shen. Mechanism of Janus Polymerization: A DFT Study[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 990-994. doi: 10.1007/s10118-019-2318-9 shu

Mechanism of Janus Polymerization: A DFT Study

  • Corresponding author: Jun Ling, lingjun@zju.edu.cn
  • Received Date: 26 March 2019
    Revised Date: 12 June 2019
    Available Online: 19 August 2019

  • Janus polymerization is featured as a combination of cationic and anionic growing ends in one living polymer chain. In the copolymerization of THF and CL catalyzed by lutetium triflates and initiated by propylene oxide, three stages are identified by kinetic study including (1) fast cationic polymerization with slow anionic one, (2) fast anionic polymerization with dormant cationic one, and (3) reactivation of cationic polymerization with coupling of anionic and cationic chain ends. In this work, density functional theory (DFT) calculation is employed to investigate the reaction details of ionic polymerization and dormancy. A " tripedal crow” configuration is proposed to illustrate the unique high-coordinated ligand exchange configuration in anionic polymerization in different stages. The trigger of dormancy is determined as chain structures rather than concentration of triflate anion according to both calculation and experimental results.
  • 加载中
    1. [1]

      You, L. X.; Ling, J. Janus Polymerization. Macromolecules 2014, 47, 2219-2225.  doi: 10.1021/ma500173c

    2. [2]

      Qiu, H.; Yang, Z.; Shah, M. I.; Mao, Z.; Ling, J. [PCL-b-P(THF-co-CL)]m multiblock copolymer synthesized by Janus polymerization. Polymer 2017, 128, 71-77.  doi: 10.1016/j.polymer.2017.08.040

    3. [3]

      Shah, M. I.; Yang, Z.; Li, Y.; Jiang, L.; Ling, J. Properties of electrospun nanofibers of multi-block copolymers of [poly-ε-caprolactone-b-poly(tetrahydrofuran-co-ε-caprolactone)]m synthesized by Janus polymerization. Polymers 2017, 9, 559.  doi: 10.3390/polym9110559

    4. [4]

      Li, Y.; Bai, T.; Li, Y.; Ling, J. Branched polytetrahydrofuran and poly(tetrahydrofuran-co-ε-caprolactone) synthesized by Janus polymerization: A novel self-healing material. Macromol. Chem. Phys. 2017, 218, 1600450.  doi: 10.1002/macp.v218.3

    5. [5]

      Li, Y.; von der Lühe, M.; Schacher, F. H.; Ling, J. 3-miktoarm star terpolymers via Janus polymerization: One-step synthesis and self-assembly. Macromolecules 2018, 51, 4938-4944.  doi: 10.1021/acs.macromol.8b00949

    6. [6]

      Li, Y.; Schacher, F. H.; Ling, J. Synthesis of polypeptoid-polycaprolactone-polytetrahydrofuran heterograft molecular polymer brushes via a combination of Janus polymerization and ROMP. Macromol. Rapid Comm. 2019, 1800905.

    7. [7]

      Qiu, H.; Yang, Z. N.; Ling, J. Facile synthesis of functional poly(ε-caprolactone) via Janus polymerization. Chinese J. Polym. Sci. 2019, 37, DOI: 10.1007/s10118-019-2242-z.  doi: 10.1007/s10118-019-2242-z

    8. [8]

      Devlin, F.; Finley, J.; Stephens, P.; Frisch, M. Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields-a comparison of local, nonlocal, and hybrid density functionals. J. Phys. Chem. 1995, 99, 16883-16902.  doi: 10.1021/j100046a014

    9. [9]

      Kim, K.; Jordan, K. Comparison of density-functional and MP2 calculations on the water monomer and dimer. J. Phys. Chem. 1994, 98, 10089-10094.  doi: 10.1021/j100091a024

    10. [10]

      Fukui, K. The path of chemical reactions-the IRC approach. Acc. Chem. Res. 1981, 14, 363-368.  doi: 10.1021/ar00072a001

    11. [11]

      Bai, T. W.; Ling, J. NAM-TMS mechanism of α-amino acid N-carboxyanhydride polymerization: A DFT study. J. Phys. Chem. A 2017, 121, 4588-4593.  doi: 10.1021/acs.jpca.7b04278

    12. [12]

      He, B. Z.; Su, H. F.; Bai, T. W.; Wu, Y. W.; Li, S. W.; Gao, M.; Hu, R. R.; Zhao, Z. J.; Qin, A. J.; Ling, J.; Tang, B. Z. Spontaneous amino-yne click polymerization: A powerful tool toward regio- and stereospecific poly(β-aminoacrylate)s. J. Am. Chem. Soc. 2017, 139, 5437-5443.  doi: 10.1021/jacs.7b00929

    13. [13]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. B.01, Gaussian, Inc,; Wallingford, CT, 2016.

    14. [14]

      Legault, C. Y. CYLview, 1.0b, Université de Sherbrooke, 2009 (http://www.cylview.org).

    15. [15]

      Ling, J.; Shen, J. G.; Hogen-Esch, T. E. A density functional theory study of the mechanisms of scandium-alkoxide initiated coordination-insertion ring-opening polymerization of cyclic esters. Polymer 2009, 50, 3575-3581.  doi: 10.1016/j.polymer.2009.06.006

    16. [16]

      Liu, J.; Ling, J.; Li, X.; Shen, Z. Monomer insertion mechanism of ring-opening polymerization of ε-caprolactone with yttrium alkoxide intermediate: A DFT study. J. Mol. Catal. A-Chem. 2009, 300, 59-64.  doi: 10.1016/j.molcata.2008.10.038

    17. [17]

      You, L. X.; Shen, Z. Q.; Kong, J.; Ling, J. A novel approach to RE-OR bond from in situ reaction of rare earth triflates and sodium alkoxides: A versatile catalyst for living ring-opening polymerization of ε-caprolactone. Polymer 2014, 55, 2404-2410.  doi: 10.1016/j.polymer.2014.03.032

  • 加载中
    1. [1]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    2. [2]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    3. [3]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    4. [4]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    5. [5]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    6. [6]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    7. [7]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    8. [8]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    9. [9]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    10. [10]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    11. [11]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    14. [14]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    18. [18]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    19. [19]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    20. [20]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

Metrics
  • PDF Downloads(0)
  • Abstract views(820)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return