Citation: Chao Zhang, Hong-Qing Liang, Jun-Ke Pi, Guang-Peng Wu, Zhi-Kang Xu. Polypropylene Separators with Robust Mussel-inspired Coatings for High Lithium-ion Battery Performances[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 1015-1022. doi: 10.1007/s10118-019-2310-4 shu

Polypropylene Separators with Robust Mussel-inspired Coatings for High Lithium-ion Battery Performances

  • Corresponding author: Guang-Peng Wu, gpwu@zju.edu.cn Zhi-Kang Xu, xuzk@zju.edu.cn
  • Received Date: 12 April 2019
    Revised Date: 28 May 2019
    Available Online: 18 July 2019

  • The performances of lithium-ion batteries (LIBs) are dependent on the wettability and stability of porous separators. Mussel-inspired coatings seem to be useful to improve the surface wettability of commercialized polyolefin separators. However, it is still a challenge to guarantee their stability under polar electrolytes. Herein, we report a facile and versatile way to enhance the wettability and stability of polypropylene separators by constructing robust polydopamine (PDA) coatings triggered with CuSO4/H2O2. These coatings were conveniently deposited on the polypropylene separator surfaces and the PDA-coated separators exhibited the improved surface wettability and thermal stability. The electrolyte uptake increased nearly two folds from the pristine separator to the modified ones. Correspondingly, the ionic conductivity also rose from 0.82 mS·cm–1 to 1.30 mS·cm–1. Most importantly, the CuSO4/H2O2-triggered PDA coatings were very stable under strong polar electrolytes, endowing the cells with excellent cycle performance and enhanced C-rate capacity. Overall, the results unequivocally demonstrate that application of PDA coatings on polyolefin separator triggered by CuSO4/H2O2 is a facile and efficient method for improving the wettability and stability of separators for high LIBs performance.
  • 加载中
    1. [1]

      Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H.; Choi, J. W. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571-1576.  doi: 10.1002/adma.201203981

    2. [2]

      Wang, J.; Liu, J.; Chao, D.; Yan, J.; Lin, J.;Shen, Z. X. Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 2014, 26, 7162-7169.  doi: 10.1002/adma.v26.42

    3. [3]

      Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.;Mai, L. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285-309.  doi: 10.1039/C8CS00441B

    4. [4]

      Wang, B.; Ryu, J.; Choi, S.; Zhang, X.; Pribat, D.; Li, X.; Zhi, L.; Park, S.; Ruoff, R. S. Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 2019, 13 (2), 2307-2315.

    5. [5]

      Li, Z.; Xiong, Y.; Sun, S.; Zhang, L.; Li, S.; Liu, X.; Xu, Z.;Xu, S. Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator. J. Membr. Sci. 2018, 565, 50-60.  doi: 10.1016/j.memsci.2018.07.094

    6. [6]

      Wang, Z.; Xiang, H.; Wang, L.; Xia, R.; Nie, S.; Chen, C.; Wang, H. A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J. Membr. Sci. 2018, 553, 10-16.  doi: 10.1016/j.memsci.2018.02.040

    7. [7]

      Shayapat, J.; Chung, O. H.;Park, J. S. Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim. Acta 2015, 170, 110-121.  doi: 10.1016/j.electacta.2015.04.142

    8. [8]

      Arora, P.; Zhang, Z. Battery separators. Chem. Rev. 2004, 104, 4419-4462.  doi: 10.1021/cr020738u

    9. [9]

      Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857-3886.  doi: 10.1039/C4EE01432D

    10. [10]

      Jiang, X.; Zhu, X.; Ai, X.; Yang, H.;Cao, Y. Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 25970-25975.  doi: 10.1021/acsami.7b05535

    11. [11]

      Song, J.; Ryou, M. H.; Son, B.; Lee, J. N.; Lee, D. J.; Lee, Y. M.; Choi, J. W.; Park, J. K. Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. Electrochim. Acta 2012, 85, 524-530.  doi: 10.1016/j.electacta.2012.06.078

    12. [12]

      Wu, D.; Deng, L.; Sun, Y.; Teh, K. S.; Shi, C.; Tan, Q.; Zhao, J.; Sun, D.;Lin, L. A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. RSC Adv. 2017, 7, 24410-24416.  doi: 10.1039/C7RA02681A

    13. [13]

      Li, X.; He, J.; Wu, D.; Zhang, M.; Meng, J.; Ni, P. Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators. Electrochim. Acta 2015, 167, 396-403.  doi: 10.1016/j.electacta.2015.03.188

    14. [14]

      Jeong, K. U.; Chae, H. D.; Lim, C. I.; Lee, H. K.; Ahn, J. H.; Nah, C. Fabrication and characterization of electrolyte membranes based on organoclay/tripropyleneglycol diacrylate/poly(vinylidene fluoride) electrospun nanofiber composites. Polym. Int. 2010, 59, 249-255.

    15. [15]

      Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426-430.  doi: 10.1126/science.1147241

    16. [16]

      Ma, M. Q.; Zhang, C.; Chen, T. T.; Yang, J.; Wang, J. J.; Ji, J.; Xu, Z. K. Bioinspired polydopamine/polyzwitterion coatings for underwater anti-oil and -freezing surfaces. Langmuir 2019, 35, 1895-1901.  doi: 10.1021/acs.langmuir.8b02320

    17. [17]

      Zhang, C.; Lv, Y.; Qiu, W. Z.; He, A.; Xu, Z. K. Polydopamine coatings with nanopores for versatile molecular separation. ACS Appl. Mater. Interfaces 2017, 9 (16), 14437-14444.  doi: 10.1021/acsami.7b03115

    18. [18]

      Yang, H. C.; Waldman, R. Z.; Wu, M. B.; Hou, J.; Chen, L.; Darling, S. B.; Xu, Z. K. Dopamine: just the right medicine for membranes. Adv. Funct. Mater. 2018, 28 (8), 1705327.  doi: 10.1002/adfm.201705327

    19. [19]

      Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 2011, 23, 3066-3070.  doi: 10.1002/adma.v23.27

    20. [20]

      Ryou, M. H.; Lee, D. J.; Lee, J. N.; Lee, Y. M.; Park, J. K.; Choi, J. W. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2012, 2, 645-650.  doi: 10.1002/aenm.201100687

    21. [21]

      Cao, C.; Tan, L.; Liu, W.; Ma, J.; Li, L. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J. Power Sources 2014, 248, 224-229.  doi: 10.1016/j.jpowsour.2013.09.027

    22. [22]

      Wang, H.; Pan, L.; Wu, C.; Gao, D.; Chen, S.; Li, L. Pyrogallic acid coated polypropylene membranes as separators for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 20535-20540.  doi: 10.1039/C5TA06381G

    23. [23]

      Pan, L.; Wang, H.; Wu, C.; Liao, C.; Li, L. Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 16003-16010.  doi: 10.1021/acsami.5b04245

    24. [24]

      Wang, H.; Wu, J.; Cai, C.; Guo, J.; Fan, H.; Zhu, C.; Dong, H.; Zhao, N.; Xu, J. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 5602-5608.  doi: 10.1021/am406052u

    25. [25]

      Pi, J. K.; Wu, G. P.; Yang, H. C.; Arges, C. G.;Xu, Z. K. Separators with biomineralized zirconia coatings for enhanced thermo- and electro-performance of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 21971-21978.  doi: 10.1021/acsami.7b04505

    26. [26]

      Kim, S.; Gim, T.;Kang, S. M. Stability-enhanced polydopamine coatings on solid substrates by iron(III) coordination. Prog. Org. Coat. 2014, 77, 1336-1339.  doi: 10.1016/j.porgcoat.2014.04.011

    27. [27]

      Zhang, C.; Ou, Y.; Lei, W. X.; Wan, L. S.; Ji, J.;Xu, Z. K. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew. Chem. Int. Ed. 2016, 55, 3054-3057.  doi: 10.1002/anie.201510724

    28. [28]

      Zhang, C.; Li, H. N.; Du, Y.; Ma, M. Q.; Xu, Z. K. CuSO4/H2O2-triggered polydopamine/poly(sulfobetaine methacrylate) coatings for antifouling membrane surfaces. Langmuir 2017, 33, 1210-1216.  doi: 10.1021/acs.langmuir.6b03948

    29. [29]

      Zhang, C.; Wu, M. B.; Wu, B. H.; Yang, J.; Xu, Z. K. Solar-driven self-heating sponges for highly efficient crude oil spill remediation. J. Mater. Chem. A 2018, 6, 8880-8885.  doi: 10.1039/C8TA02336K

    30. [30]

      Zhang, C.; Yang, H. C.; Wan, L. S.; Liang, H. Q.; Li, H.; Xu, Z. K. Polydopamine-coated porous substrates as a platform for mineralized β-FeOOH nanorods with photocatalysis under sunlight. ACS Appl. Mater. Interfaces 2015, 7, 11567-11574.  doi: 10.1021/acsami.5b02530

    31. [31]

      Wei, H.; Ren, J.; Han, B.; Xu, L.; Han, L.; Jia, L. Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids Surf. B 2013, 110, 22-28.  doi: 10.1016/j.colsurfb.2013.04.008

    32. [32]

      Kim, J. H.; Kim, J. H.; Kim, J. M.; Lee, Y. G.;Lee, S. Y. Superlattice crystals-mimic, flexible/functional ceramic membranes: Beyond polymeric battery separators. Adv. Energy Mater. 2015, 5, 1500954.  doi: 10.1002/aenm.201500954

    33. [33]

      Li, J.; Huang, Y.; Zhang, S.; Jia, W.; Wang, X.; Guo, Y.; Jia, D.; Wang, L. Decoration of silica nanoparticles on polypropylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 7499-7504.  doi: 10.1021/acsami.7b00065

    34. [34]

      Wang, Z.; Guo, F.; Chen, C.; Shi, L.; Yuan, S.; Sun, L.; Zhu, J. Self-assembly of PEI/SiO2 on polyethylene separators for Li-Ion batteries with enhanced rate capability. ACS Appl. Mater. Interfaces 2015, 7, 3314-3322.  doi: 10.1021/am508149n

    35. [35]

      Xiang, Y.; Zhu, W.; Qiu, W.; Guo, W.; Lei, J.; Liu, D.; Qu, D.; Xie, Z.; Tang, H.; Li, J. SnO2 functionalized polyethylene separator with enhanced thermal stability for high performance lithium ion battery. ChemistrySelect 2018, 3, 911-916.  doi: 10.1002/slct.201702529

    36. [36]

      Kang, S. M.; Ryou, M. H.; Choi, J. W.;Lee, H. Mussel- and diatom-inspired silica coating on separators yields improved power and safety in Li-Ion batteries. Chem. Mater. 2012, 24, 3481-3485.  doi: 10.1021/cm301967f

    37. [37]

      Yoo, Y.; Kim, B. G.; Pak, K.; Han, S. J.; Song, H. S.; Choi, J. W.; Im, S. G. Initiated chemical vapor deposition (iCVD) of highly cross-linked polymer films for advanced lithium-ion battery separators. ACS Appl. Mater. Interfaces 2015, 7, 18849-18855.  doi: 10.1021/acsami.5b05720

    38. [38]

      Zhang, S. S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351-364.  doi: 10.1016/j.jpowsour.2006.10.065

    39. [39]

      Yang, H. C.; Liao, K. J.; Huang, H.; Wu, Q. Y.; Wan, L. S.; Xu, Z. K. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J. Mater. Chem. A 2014, 2, 10225-10230.  doi: 10.1039/C4TA00143E

    40. [40]

      Avery, N. R.; Black, K. J. Kinetic analysis of capacity fade in lithium/coke half-cells. J. Power Sources 1997, 68, 191-194.  doi: 10.1016/S0378-7753(96)02550-5

    41. [41]

      Zhu, G.; Wen, K.; Lv, W.; Zhou, X.; Liang, Y.; Yang, F.; Chen, Z.; Zou, M.; Li, J.; Zhang, Y.; He, W. Materials insights into low-temperature performances of lithium-ion batteries. J. Power Sources 2015, 300, 29-40.  doi: 10.1016/j.jpowsour.2015.09.056

    42. [42]

      Zhu, X.; Jiang, X.; Ai, X.; Yang, H.; Cao, Y. TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J. Membr. Sci. 2016, 504, 97-103.  doi: 10.1016/j.memsci.2015.12.059

    43. [43]

      Feng, G.; Li, Z.; Mi, L.; Zheng, J.; Feng, X.; Chen, W. Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J. Power Sources 2018, 376, 177-183.  doi: 10.1016/j.jpowsour.2017.11.086

  • 加载中
    1. [1]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    2. [2]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    3. [3]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    4. [4]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    5. [5]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    6. [6]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

    7. [7]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    10. [10]

      Bing JiangGang ZouBi LuoYan GuoJingru LiWendi ZhangQianxiao FanLehao LiuLihua ChuQiaobao ZhangMeicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801

    11. [11]

      Xiangkang JiangZhixing WangHong DongXiang ZhangJin HuManman ChuYanshuai HongLei XuWenjie PengXiqian YuJiexi Wang . An in-depth understanding of Al doping homogeneity affecting the performance of LiCoO2 at cut-off voltage over 4.6 V. Chinese Chemical Letters, 2024, 35(12): 109553-. doi: 10.1016/j.cclet.2024.109553

    12. [12]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    13. [13]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    14. [14]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    19. [19]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    20. [20]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

Metrics
  • PDF Downloads(0)
  • Abstract views(769)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return