Citation: Kotohiro Nomura, Sapanna Chaimongkolkunasin. (Arylimido)vanadium(V)-Alkylidene Complexes as Catalysts for Ring-opening Metathesis Polymerization (ROMP) of Cyclic Olefins: Ligand Design for Exhibiting the High Activity[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 943-950. doi: 10.1007/s10118-019-2298-9 shu

(Arylimido)vanadium(V)-Alkylidene Complexes as Catalysts for Ring-opening Metathesis Polymerization (ROMP) of Cyclic Olefins: Ligand Design for Exhibiting the High Activity

  • Corresponding author: Kotohiro Nomura, ktnomura@tmu.ac.jp
  • Received Date: 5 May 2019
    Revised Date: 17 May 2019
    Available Online: 28 June 2019

  • (Imido)vanadium(V)-alkylidene complexes of type V(CHSiMe3)(NR)(ORʹ)(PMe3)2 [R = Ad, C6H5, 2,6-Me2C6H3, 2,6-Cl2C6H3; Rʹ = 2,6-Me2C6H3, 2,6-iPr2C6H3, 2,6-F2C6H3, C6F5, C6Cl5] exhibited from moderate to remarkable catalytic activities for ring-opening metathesis polymerization (ROMP) of norbornene (NBE). The catalytic activities were affected by the ligand substituents, and V(CHSiMe3)(N-2,6-Cl2C6H3)(OC6X5)(PMe3)2 (X = F, Cl) demonstrated the exceptionally high catalytic activities for ROMP of NBE. The complexes polymerized cycloheptene (CHPE) and cis-cyclooctene (COE), and ROMP of COE by the OC6Cl5 analogue proceeded in a living manner even at 80 °C, and the activity increased with increasing the temperature up to 120 °C. Highly active catalysts for ROMP of cyclic olefins (NBE, cyclopentene, and CHPE) can be generated in situ by premixing isolated V(CHSiMe3)(NC6F5)(O-2,6-iPr2C6H3)(PMe3)2 with 1.0 equiv. of C6F5OH or C6Cl5OH via immediate phenoxy exchange; the activity was affected by the kind of phenol added [TOF in the ROMPs of NBE: 4.62 × 104 min–1 (upon addition of C6F5OH) versus 37.3 min–1 (none)].
  • 加载中
    1. [1]

      Handbook of Metathesis, ed. by Grubbs, R. H.; Wenzel, A. G.; O'Leary, D. J. and Khosravi, E. Wiley-VCH, Weinheim, 2015.

    2. [2]

      Olefin Metathesis: Theory and Practice, ed. by Grela, K. John Wiley & Sons, Inc., Hoboken, New Jersey, 2014.

    3. [3]

      Handbook of Metathesis, 2nd Ed, ed. by Grubbs, R. H. and Wenzel, A. G. Wiley-VCH, Weinheim, 2015, Vol. 1.

    4. [4]

      Pietraszuk, C. in Olefin Metathesis: Theory and Practice, ed. by Grela, K., John Wiley & Sons, Inc. Hoboken, New Jersey, 2014, pp. 371−396.

    5. [5]

      Schrock, R. R. Recent advances in high oxidation state Mo and W imido alkylidene chemistry. Chem. Rev. 2009, 109, 3211-3226.  doi: 10.1021/cr800502p

    6. [6]

      Schrock, R. R. Synthesis of stereoregular polymers through ring-opening metathesis polymerization. Acc. Chem. Res. 2014, 47, 2457-2466.  doi: 10.1021/ar500139s

    7. [7]

      Vougioukalakis, G.; Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 2010, 110, 1746-1787.  doi: 10.1021/cr9002424

    8. [8]

      Keitz, B. K., in Handbook of Metathes, 2nd Ed, ed. by Grubbs, R. H. and Wenzel, A. G. Wiley-VCH, Weinheim, 2015, vol. 1, pp. 71−85.

    9. [9]

      Nomura, K.; Hou, X. Synthesis of vanadium-alkylidene complexes and their use as catalysts for ring opening metathesis polymerization. Dalton Trans. 2017, 46, 12-24.  doi: 10.1039/C6DT03757G

    10. [10]

      Zhang, S.; Zhang, W.; Nomura, K. Synthesis and reaction chemistry of alkylidene complexes with titanium, zirconium, vanadium, and niobium: Effective catalysts for olefin metathesis polymerization and the other organic transformations. Adv. Organomet. Chem. 2017, 68, 93-136.  doi: 10.1016/bs.adomc.2017.08.001

    11. [11]

      Nomura, K.; Abdellatif, M. M. Precise synthesis of polymers containing functional end groups by living ring-opening metathesis polymerization (ROMP): Efficient tools for synthesis of block/graft copolymers. Polymer 2010, 51, 1861-1881.  doi: 10.1016/j.polymer.2010.02.028

    12. [12]

      Leitgeb, A.; Wappel, J.; Slugovc, C. The ROMP toolbox upgraded. Polymer 2010, 51, 2927-2946.  doi: 10.1016/j.polymer.2010.05.002

    13. [13]

      Buchmeiser, M. R. Ring-opening metathesis polymerization-derived materials for separation science, heterogeneous catalysis and tissue engineering. Macromol. Symp. 2010, 298, 17-24.  doi: 10.1002/masy.v298.1

    14. [14]

      Mutlu, H.; de Espinosa, L. M.; Meier, M. A. R. Acyclic diene metathesis: A versatile tool for the construction of defined polymer architectures. Chem. Soc. Rev. 2011, 40, 1404-1445.  doi: 10.1039/B924852H

    15. [15]

      Schulz, M. D.; Wagener, K. B. Precision polymers through ADMET polymerization. Macromol. Chem. Phys. 2014, 215, 1936-1945.  doi: 10.1002/macp.v215.20

    16. [16]

      Handbook of Metathesis, 2nd Ed., ed. by Grubbs, R. H. and Khosravi, E. Wiley-VCH, Weinheim, 2015, Vol. 3.

    17. [17]

      Lunn, D. J.; Discekici, E. H.; de Alaniz, J. R.; Gutekunst, W. R.; Hawker, C. J. Established and emerging strategies for polymer chain-end modification. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2903-2914.  doi: 10.1002/pola.v55.18

    18. [18]

      Chen, Y.; Abdellatif, M. M.; Nomura, K. Olefin metathesis polymerization: Some recent developments in the precise polymerizations for synthesis of advanced materials (by ROMP, ADMET). Tetrahedron 2018, 74, 619-643.  doi: 10.1016/j.tet.2017.12.041

    19. [19]

      Gestwicki J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling L. L. Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 2002, 124, 14922-14933.  doi: 10.1021/ja027184x

    20. [20]

      Nomura, K.; Zhang, S. Design of vanadium complex catalysts for precise olefin polymerization. Chem. Rev. 2011, 111, 2342-2362.  doi: 10.1021/cr100207h

    21. [21]

      Redshaw, C. Vanadium procatalysts bearing chelating aryloxides: structure-activity trends in ethylene polymerization. Dalton Trans. 2010, 39, 5595-5604.  doi: 10.1039/b924088h

    22. [22]

      Nomura, K.; Hou, X. in Handbook of transition metal polymerization catalysts, 2nd Ed., ed. by Hoff, R. Wiley-VCH, Weinheim, 2018, p. 313.

    23. [23]

      Nomura, K.; Onishi, Y.; Fujiki, M.; Yamada, J. Syntheses of various (arylimido)vanadium(V)-dialkyl complexes containing aryloxo and alkoxo ligands, and ring-opening metathesis polymerization using a vanadium(V)-alkylidene complex. Organometallics 2008, 27, 3818-3824.  doi: 10.1021/om800284d

    24. [24]

      Nomura, K.; Suzuki, K.; Katao, S.; Matsumoto, Y. Ring-opening polymerization of THF by aryloxo-modified (imido)vanadium(V)-alkyl complexes and ring-opening metathesis polymerization by highly active V(CHSiMe3)(NAd)(OC6F5)(PMe3)2. Organometallics 2012, 31, 5114-5120.  doi: 10.1021/om300463f

    25. [25]

      Hou, X.; Nomura, K. (Arylimido)vanadium(V)-alkylidene complexes containing fluorinated aryloxo and alkoxo ligands for fast living ring-opening metathesis polymerization (ROMP) and highly cis-specific ROMP. J. Am. Chem. Soc. 2015, 137, 4662-4665.  doi: 10.1021/jacs.5b02149

    26. [26]

      Hou, X.; Nomura, K. Ring-opening metathesis polymerization of cyclic olefins by (arylimido)vanadium(V)-alkylidenes: Highly active, thermally robust cis specific polymerization. J. Am. Chem. Soc. 2016, 138, 11840-11849.  doi: 10.1021/jacs.6b06330

    27. [27]

      Chaimongkolkunasin, S.; Nomura, K. (Arylimido)vanadium(V)-alkylidenes containing chlorinated phenoxy ligands: Thermally robust, highly active catalyst in ring-opening metathesis polymerization of cyclic olefins. Organometallics 2018, 37, 2064-2074.  doi: 10.1021/acs.organomet.8b00231

    28. [28]

      Schleyer, P. v. R.; Williams, J. E.; Blanchard, K. R. Evaluation of strain in hydrocarbons. The strain in adamantane and its origin. J. Am. Chem. Soc. 1970, 92, 2377-2386.  doi: 10.1021/ja00711a030

    29. [29]

      Hejl, A.; Scherman, O. A.; Grubbs, R. H. Ring-opening metathesis polymerization of functionalized low-strain monomers with ruthenium-based catalysts. Macromolecules 2005, 38, 7214-7218.  doi: 10.1021/ma0501287

    30. [30]

      Hlil, A. R.; Balogh, J.; Moncho, S.; Su, H. L.; Tuba, R.; Brothers, E. N.; Al-Hashimi, M.; Bazzi, H. S. Ring opening metathesis polymerization (ROMP) of five- to eight-membered cyclic olefins: Computational, thermodynamic, and experimental approach. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3137-3145.  doi: 10.1002/pola.v55.18

    31. [31]

      Katz, T. J.; Lee, S. J.; Acton, N. Stereospecific polymerizations of cycloalkenes induced by a metal-carbene. Tetrahedron Lett. 1976, 17, 4247-4250.  doi: 10.1016/0040-4039(76)80086-X

    32. [32]

      Reported examples for ROMP of cyclooctene (COE) by W-alkylidene complex catalyst in the presence of AlCl3 (references 32−34). Blosch, L. L.; Abboud, K.; Boncella, J. M. Synthesis of an air-stable, moisture-stable, and thermally stable tungsten(VI) oxo alkylidene complex. Precursor to an air- and moisture-stable ROMP catalyst. J. Am. Chem. Soc. 1991, 113, 7066−7068.

    33. [33]

      Blosch, L. L.; Gamble, A. S.; Abboud, K.; Boncella, J. M. Synthesis of stable tungsten(VI) imido alkylidene complexes: Crystal structure of an air-stable cationic alkylidene complex. Organometallics 1992, 11, 2342-2344.  doi: 10.1021/om00043a010

    34. [34]

      Gamble, A. S.; Boncella, J. M. Facile synthesis of cationic tungsten(VI) alkylidene complexes. Organometallics 1993, 12, 2814-2819.  doi: 10.1021/om00031a058

    35. [35]

      ROMP of COE by bimetallic Mo, W alkylidenes (references 35, 36). Barinova, Y. P.; Begantsova, Y. E.; Stolyarova, N. E.; Grigorieva, I. K.; Cherkasov, A. V.; Fukin, G. K.; Kurskii, Y. A.; Bochkarev, L. N.; Abakumov, G. A. Synthesis and structures of bimetallic silicon-containing imido alkylidene complexes of molybdenum Me2Si[CHMo(NAr)(ORF3)2]2 and PhVinSi[CHMo(NAr)(ORF3)2]2. Inorg. Chim. Acta 2010, 363, 2313-2317.  doi: 10.1016/j.ica.2010.03.063

    36. [36]

      Bochkarev, A. L.; Basova, G. V.; Grigorieva, I. K.; Stolyarova, N. E.; Malysheva, I. P.; Fukin, G. K.; Baranov, E. V.; Kurskii, Y. A.; Bochkarev, L. N.; Abakumov, G. A. Synthesis and structures of bimetallic silicon-containing imido alkylidene complexes of tungsten (RʹO)2(ArN)W=CH―SiR2―CH=W(NAr)(ORʹ)2(R = Me, Ph) and (RʹO)2(ArN)W=CH―SiMe2SiMe2―CH=W(NAr)(ORʹ)2. J. Organomet. Chem. 2010, 695, 692-696.  doi: 10.1016/j.jorganchem.2009.12.002

    37. [37]

      Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Muller, P.; Hoveyda, A. H. Z-selective olefin metathesis processes catalyzed by a molybdenum hexaisopropylterphenoxide monopyrrolide complex. J. Am. Chem. Soc. 2009, 131, 7962-7963.  doi: 10.1021/ja902738u

    38. [38]

      Chaimongkolkunasin, S.; Hou, X.; Nomura, K. Ring opening metathesis polymerization of norbornene and tetracyclododecene with cyclooctene by using (arylimido)vanadium(V)-alkylidene catalyst. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3067-3074.  doi: 10.1002/pola.v55.18

    39. [39]

      Nomura, K.; Matsumoto, Y. Unique reactivity of (arylimido)vanadium(V)-alkyl complexes with phenols: Fast phenoxy ligand exchange in the presence of vanadium(V)-alkyls. Organometallics 2011, 30, 3610-3618.  doi: 10.1021/om200299a

    40. [40]

      Hatagami, K.; Nomura, K. Synthesis of (adamantylmido)vanadium(V)-alkyl, alkylidene complex trapped with PMe3: Reactions of the alkylidene complexes with phenols. Organometallics 2014, 33, 6585-6592.  doi: 10.1021/om500923y

    41. [41]

      Hayashibara, H.; Hou, X.; Nomura, K. Facile in situ generation of highly active (arylimido)vanadium(V)-alkylidene catalysts for ring-opening metathesis polymerization (ROMP) of cyclic olefins by immediate phenoxy ligand exchange. Chem. Commun., 2018, 54, 13559-13562.  doi: 10.1039/C8CC07974A

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    3. [3]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    4. [4]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    5. [5]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    6. [6]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    7. [7]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    8. [8]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    9. [9]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    10. [10]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    11. [11]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    12. [12]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    13. [13]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    14. [14]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    15. [15]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    16. [16]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    17. [17]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    18. [18]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    19. [19]

      Yongsheng XuLisha YaoJian LiYanzhao DongDongyang XieMiaomiao ZhangFeng LiYunsheng DaiJinli ZhangHaiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318

    20. [20]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

Metrics
  • PDF Downloads(0)
  • Abstract views(762)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return