Citation: Yu-Long Jin, Lin Liu, Yu-Jie Wang, Zhen Liu, Bo-Ping Liu. Mechanistic Study on the Dominant Promotion Effect of Al-/Ti-/Zr-modifications over the VOx/SiO2 UHMWPE Catalysts[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 995-1004. doi: 10.1007/s10118-019-2295-z shu

Mechanistic Study on the Dominant Promotion Effect of Al-/Ti-/Zr-modifications over the VOx/SiO2 UHMWPE Catalysts

  • Corresponding author: Bo-Ping Liu, boping@scau.edu.cn
  • Received Date: 30 March 2019
    Revised Date: 13 May 2019
    Accepted Date: 16 May 2019
    Available Online: 2 July 2019

  • Recently, we reported the first VOx/SiO2 ethylene polymerization catalyst for making Cl-free UHMWPE, and found the dominant promotion effects of Al-/Ti-/Zr-modifications over this catalyst system (Macromol. Chem. Phys. 2017, 218, 1600443). In this work, density functional theory is applied to investigate the underlying mechanism of this remarkable promotion effect of Al-/Ti-/Zr-modifications on a molecular and atomic level. The cluster model with V(III) is found to be the most possible active site due to its lowest overall energy barrier for monomer insertion, though the process of C2H4 coordination and the subsequent formation of transition state are most energy favored for V(II) species. By modifying one of or both V―O―Si in the active model with V―O―M (M = Al, Ti, or Zr), the energy barrier for the binding of the upcoming C2H4 gets lower (particularly for Al- and Zr-modified catalysts), and the transition state also becomes more stable. Generally, the insertion process of C2H4 gets easier after support Al-/Ti-/Zr-modifications. This dominant promotion effect is partially ascribed to the more enriched positive charge distribution on or nearby the V center, and the narrower energy gap between the LUMO of model catalysts and the HOMO of C2H4 for these modified catalysts also contributes much. In addition, the decreased steric hindrance around the V center should be taken into account for the modified models as well. Furthermore, the Brønsted acidity of the catalysts is investigated by introducing a pendent hydroxyl group to the model catalysts, which has a close contact with the V center. Similar promotion effect of support modification by Al, Ti, and Zr could still be observed.
  • 加载中
    1. [1]

      Weckhuysen, B. M.; Keller, D. E. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today 2003, 78, 25-46.  doi: 10.1016/S0920-5861(02)00323-1

    2. [2]

      Matta, A.; Zeng, Y.; Taniike, T.; Terano, M. Vanadium-modified bimetallic phillips catalyst with high branching ability for ethylene polymerization. Macromol. Reac. Eng. 2012, 6, 346-350.  doi: 10.1002/mren.v6.8

    3. [3]

      Zeng, Y.; Matta, A.; Dwivedi, S.; Taniike, T.; Terano, M. Development of a hetero-bimetallic Phillips-type catalyst for ethylene polymerization. Macromol. Reac. Eng. 2013, 7, 668-673.  doi: 10.1002/mren.v7.12

    4. [4]

      Wang, J.; Cheng, R.; He, X.; Liu, Z.; Zhao, N.; Liu, B. Vanadium modification effects on the (SiO2/MgO/MgCl2)·TiClx Ziegler-Natta polyethylene catalyst. Macromol. Reac. Eng. 2016, 10, 246-260.  doi: 10.1002/mren.201500056

    5. [5]

      Cheng, R.; Xue, X.; Liu, W.; Zhao, N.; He, X.; Liu, Z.; Liu, B. Novel SiO2‐supported chromium oxide (Cr)/vanadium oxide (V) bimetallic catalysts for production of bimodal polyethylene. Macromol. Reac. Eng. 2015, 9, 462-472.  doi: 10.1002/mren.v9.5

    6. [6]

      Zhao, N.; Cheng, R.; He, X.; Liu, Z.; Liu, B. A novel SiO2‐supported Cr―V bimetallic catalyst making polyethylene and ethylene/1-hexene copolymers with bimodal molecular weight distribution. Macromol. Chem. Phys. 2014, 1753-1766.

    7. [7]

      Liu, B.; Tian, Z.; Zhao, N.; Liu, Z.; Liu, B. Peculiarities of ethylene polymerization kinetics with an imido-vanadium/silyl-chromate bimetallic catalyst: effect of polymerization conditions. Ind. Eng. Chem. Res. 2017, 56, 6164-6175.  doi: 10.1021/acs.iecr.7b00883

    8. [8]

      Liu, B.; Zhao, N.; Jin, Y.; Cheng, R.; He, X.; Liu, Z.; Liu, B. Effects of alkyl aluminum on SiO2-supported silyl-chromate(Cr)/imido-vanadium(V) bimetallic catalysts for producing bimodal polyethylene. Macromol. Reac. Eng. 2017, 11, 1700006.  doi: 10.1002/mren.v11.5

    9. [9]

      Jin, Y.; Zhao, N.; Cheng, R.; He, X.; Liu, Z.; Dong, D.; Bin, Y.; Chen, X.; Li, L.; Liu, B. One pot synthesis of bimodal UHMWPE/HDPE in‐reactor blends with Cr/V bimetallic catalysts. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3404–3412.  doi: 10.1002/pola.v55.20

    10. [10]

      Jin, Y.; Cheng, R.; He, X.; Liu, Z.; Zhao, N.; Liu, B. The first vanadium-oxide-based UHMWPE catalyst supported on chemically modified silica gel. Macromol. Chem. Phys. 2017, 218, 1600443.  doi: 10.1002/macp.v218.7

    11. [11]

      McDaniel, M. P. A review of the Phillips supported chromium catalyst and its commercial use for ethylene polymerization. Adv. Catal. 2010, 53, 123-606.

    12. [12]

      Gierada, M.; Handzlik, J. Active sites formation and their transformations during ethylene polymerization by the Phillips CrOx/SiO2 catalyst. J. Catal. 2017, 352, 314-328.  doi: 10.1016/j.jcat.2017.05.025

    13. [13]

      Anthony, G.; Alexis, T. B. A theoretical investigation of the selective oxidation of methanol to formaldehyde on isolated vanadate species supported on silica. J. Phys. Chem. C 2008, 112, 13204-13214.  doi: 10.1021/jp801339q

    14. [14]

      William, C. V.; Anthony, G.; Jennifer, S.; Alexis, T. B. An experimental and theoretical investigation of the structure and reactivity of bilayered VOx/TiOx/SiO2 catalysts for methanol oxidation. J. Catal. 2010, 270, 163-171.  doi: 10.1016/j.jcat.2009.12.017

    15. [15]

      Cheng, R.; Xu, C.; Liu, Z.; Dong, Q.; He, X.; Fang, Y.; Terano, M.; Hu, Y.; Pullukat, T. J.; Liu, B. High-resolution spectroscopy (XPS, 1H MAS solid-state NMR) and DFT investigations into Ti-modified Phillips CrOx/SiO2 catalysts. J. Catal. 2010, 273, 103-115.  doi: 10.1016/j.jcat.2010.05.002

    16. [16]

      Ma, Y.; Wang, L.; Liu, Z.; Cheng, R.; Zhong, L.; Yang, Y.; He, X.; Fang, Y.; Terano, M.; Liu, B. High-resolution XPS and DFT investigations into Al-modified Phillips CrOx/SiO2 catalysts. J. Mol. Catal. A-Chem. 2015, 401, 1-12.  doi: 10.1016/j.molcata.2015.01.020

    17. [17]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. in Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford, CT, USA. 2016.

    18. [18]

      Jeng-Da, C.; Martin, H. G. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.  doi: 10.1039/b810189b

    19. [19]

      Fong, A.; Ye, Y.; Ivry, S. L.; Scott, S. L.; Peters, B. Computational kinetic discrimination of ethylene polymerization mechanisms for the Phillips (Cr/SiO2) catalyst. ACS Catal. 2015, 5, 9882-9891.

    20. [20]

      Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.  doi: 10.1039/b508541a

    21. [21]

      Gonzalez, C.; Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523-5527.  doi: 10.1021/j100377a021

    22. [22]

      Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Intrinsic reaction coordinate: Calculation, bifurcation, and automated search. Int. J. Quantum. Chem. 2015, 115, 258-269.  doi: 10.1002/qua.24757

    23. [23]

      Reed, A. E.; Weinhold, F.; Curtiss, L. A.; Pochatko, D. J. Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H2O, NH3, O2, F2, CO, and CO2 with HF, H2O, and NH3. J. Chem. Phys. 1986, 84, 5687-5705.  doi: 10.1063/1.449928

    24. [24]

      Frank, W. Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J. Comput. Chem. 2012, 33, 2363-2379.  doi: 10.1002/jcc.v33.30

    25. [25]

      Tian, L.; Feiwu, C. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.  doi: 10.1002/jcc.v33.5

    26. [26]

      Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. Properties of atoms in molecules: atomic volumes. J. Am. Chem. Soc. 1987, 109, 417-423.  doi: 10.1021/ja00236a020

    27. [27]

      Keller, D. E.; Visser, T.; Soulimani, F.; Koningsberger, D. C.; Weckhuysen, B. M. Hydration effects on the molecular structure of silica-supported vanadium oxide catalysts: A combined IR, Raman, UV-vis and EXAFS study. Vib. Spectrosc. 2007, 43, 140-151.  doi: 10.1016/j.vibspec.2006.07.005

    28. [28]

      Olthof, B.; Khodakov, A.; Bell, A. T.; Iglesia, E. Effects of support composition and pretreatment conditions on the structure of vanadia dispersed on SiO2, Al2O3, TiO2, ZrO2, and HfO2. J. Phys. Chem. B 2000, 104, 1516-1528.  doi: 10.1021/jp9921248

    29. [29]

      Tian, H.; Ross, E. I.; Wachs, I. E. Quantitative determination of the speciation of surface vanadium oxides and their catalytic activity. J. Phys. Chem. B 2006, 110, 9593-9600.  doi: 10.1021/jp055767y

    30. [30]

      Khaliullin, R. Z.; Bell, A. T. A density functional theory study of the oxidation of methanol to formaldehyde over vanadia supported on silica, titania, and zirconia. J. Phys. Chem. B 2002, 106, 7832-7838.  doi: 10.1021/jp014695h

    31. [31]

      Blasco, T.; Nieto, J. M. L. Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts. Appl. Catal. A-Gen. 1997, 157, 117-142.  doi: 10.1016/S0926-860X(97)00029-X

    32. [32]

      Koten, G. v.; Hagen, H.; Boersma, J. Homogeneous vanadium-based catalysts for the Ziegler-Natta polymerization of α-olefins. Chem. Soc. Rev. 2002, 31, 357-364.  doi: 10.1039/B205238E

    33. [33]

      Nomura, K.; Zhang, S. Design of vanadium complex catalysts for precise olefin polymerization. Chem. Rev. 2010, 111, 2342-2362.

    34. [34]

      Cossee, P. Ziegler-Natta catalysis I. Mechanism of polymerization of α-olefins with Ziegler-Natta catalysts. J. Catal. 1964, 3, 80-88.  doi: 10.1016/0021-9517(64)90095-8

    35. [35]

      Goldsmith, B. R.; Peters, B.; Johnson, J. K.; Gates, B. C.; Scott, S. L. Beyond ordered materials: Understanding catalytic sites on amorphous solids. ACS Catal. 2017, 7, 7543-7557.  doi: 10.1021/acscatal.7b01767

    36. [36]

      Lichtenstein, L.; Heyde, M.; Freund, H. J. Atomic arrangement in two-dimensional silica: From crystalline to vitreous structures. J. Phys. Chem. C 2012, 116, 20426-20432.  doi: 10.1021/jp3062866

    37. [37]

      Büchner, C.; Liu, L.; Stuckenholz, S.; Burson, K. M.; Lichtenstein, L.; Heyde, M.; Gao, H. J.; Freund, H. J. Building block analysis of 2D amorphous networks reveals medium range correlation. J. Non-cryst. Solid. 2016, 435, 40-47.  doi: 10.1016/j.jnoncrysol.2015.12.020

    38. [38]

      Gao, X.; Bare, S. R.; Weckhuysen, B. M.; Wachs, I. E. In situ spectroscopic investigation of molecular structures of highly dispersed vanadium oxide on silica under various conditions. J. Phys. Chem. B 1998, 102, 10842-10852.  doi: 10.1021/jp9826367

    39. [39]

      Delley, M. F.; Núñez-Zarur, F.; Conley, M. P.; Comas-Vives, A.; Siddiqi, G.; Norsic, S.; Monteil, V.; Safonova, O. V.; Copéret, C. Proton transfers are key elementary steps in ethylene polymerization on isolated chromium(III) silicates. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 11624-11629.  doi: 10.1073/pnas.1405314111

    40. [40]

      Conley, M. P.; Delley, M. F.; Núñez-Zarur, F.; Comas-Vives, A.; Copéret, C. Heterolytic activation of C―H bonds on CrIII-O surface sites is a key step in catalytic polymerization of ethylene and dehydrogenation of propane. Inorg. Chem. 2015, 54, 5065-5078.  doi: 10.1021/ic502696n

    41. [41]

      Feher, F. J.; Blanski, R. L. Olefin polymerization by vanadium-containing silsesquioxanes: Synthesis of a dialkyl-oxo-vanadium(V) complex that initiates ethylene polymerization. J. Am. Chem. Soc. 1992, 114, 5886-5887.  doi: 10.1021/ja00040a076

    42. [42]

      Liu, B.; Fang, Y.; Xia, W.; Terano, M. Theoretical investigation of novel silsesquioxane-supported Phillips-type catalyst by density functional theory (DFT) method. Kinet. Catal. 2006, 47, 234-240.  doi: 10.1134/S0023158406020121

    43. [43]

      Quadrelli, E. A.; Basset, J.-M. On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis. Coordin. Chem. Rev. 2010, 254, 707-728.  doi: 10.1016/j.ccr.2009.09.031

    44. [44]

      Uchino, T.; Tokuda, Y.; Yoko, T. Vibrational dynamics of defect modes in vitreous silica. Phys. Rev. B 1998, 58, 5322-5328.

    45. [45]

      Yoshida, Y.; Matsui, S.; Fujita, T. Bis(pyrrolide-imine) Ti complexes with MAO: A new family of high performance catalysts for olefin polymerization. J. Organomet. Chem. 2005, 690, 4382-4397.  doi: 10.1016/j.jorganchem.2005.01.038

    46. [46]

      Tomoaki, M.; Terunori, F. High-performance olefin polymerization catalysts discovered on the basis of a new catalyst design concept. Chem. Soc. Rev. 2008, 37, 1264-1277.  doi: 10.1039/b708843b

    47. [47]

      Sun, Q.; Cheng, R.; Liu, Z.; He, X.; Zhao, N.; Liu, B. Effect of F-modification over Phillips Cr/SiO2 catalyst for ethylene polymerization. ChemCatChem 2016, 9, 3364-3373.

    48. [48]

      Zhang, H.; Hu, Y.; Zhang, C.; Lee, D.; Yoon, K.; Zhang, X. Electrochemically assisted ethylene (co-)polymerization with a vanadium-based Ziegler-Natta catalyst. Catal. Commun. 2016, 83, 39-42.  doi: 10.1016/j.catcom.2016.04.024

    49. [49]

      Adisson, E.; Deffieux, A.; Fontanille, M. Polymerization of ethylene at high temperature by vanadium-based heterogeneous Ziegler-Natta catalysts. I. Study of the deactivation process. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 831-839.

    50. [50]

      Adisson, E.; Deffieux, A.; Fontanille, M.; Bujadoux, K. Polymerization of ethylene at high temperature by vanadium-based heterogeneous Ziegler-Natta catalysts. II. Study of the activation by halocarbons. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1033-1041.

    51. [51]

      Jin, Y.; Zhao, N.; Cheng, R.; He, X.; Liu, Z.; Liu, B. Remarkable promotion effect of sulfation over the SiO2-supported vanadium-oxide‐based catalysts for UHMWPE. Macromol. Chem. Phys. 2017, 218, 1700236.  doi: 10.1002/macp.v218.19

    52. [52]

      Espelid, Ø.; Børve, K. J. Theoretical models of ethylene polymerization over a mononuclear chromium(II)/silica site. J. Catal. 2000, 195, 125-139.  doi: 10.1006/jcat.2000.2986

    53. [53]

      Liu, B.; Fang, Y.; Terano, M. High resolution X-ray photoelectron spectroscopic analysis of transformation of surface chromium species on Phillips CrOx/SiO2 catalysts isothermally calcined at various temperatures. J. Mol. Catal. A-Chem. 2004, 219, 165-173.  doi: 10.1016/j.molcata.2004.05.001

    54. [54]

      Murray, J. S.; Politzer, P. Molecular electrostatic potentials and noncovalent interactions. WIREs. Comput. Mol. Sci. 2017, 7, e1326.  doi: 10.1002/wcms.1326

    55. [55]

      Politzer, P.; Murray, J. S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 2002, 108, 134-142.  doi: 10.1007/s00214-002-0363-9

    56. [56]

      Tonosaki, K.; Taniike, T.; Terano, M. Origin of broad molecular weight distribution of polyethylene produced by Phillips-type silica-supported chromium catalyst. J. Mol. Catal. A-Chem. 2011, 340, 33-38.  doi: 10.1016/j.molcata.2011.03.005

    57. [57]

      Hicks, J. C.; Mullis, B. A.; Jones, C. W. Sulfonic acid functionalized SBA-15 silica as a methylaluminoxane-free cocatalyst/support for ethylene polymerization. J. Am. Chem. Soc. 2007, 129, 8426-8427.  doi: 10.1021/ja0727870

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    3. [3]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    4. [4]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    5. [5]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    6. [6]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    7. [7]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    8. [8]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    9. [9]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    10. [10]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    11. [11]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    12. [12]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    13. [13]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    16. [16]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    17. [17]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    18. [18]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    19. [19]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    20. [20]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

Metrics
  • PDF Downloads(0)
  • Abstract views(779)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return