Citation: Cheng-Jian Zhang, Xing-Hong Zhang. Recent Progress on COS-derived Polymers[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 951-958. doi: 10.1007/s10118-019-2288-y shu

Recent Progress on COS-derived Polymers

  • Corresponding author: Xing-Hong Zhang, xhzhang@zju.edu.cn
  • Received Date: 28 March 2019
    Revised Date: 23 April 2019
    Available Online: 1 July 2019

  • The synthesis of sulfur-containing polymer, a very promising functional material, has made a great progress in the past several years. This review is focused on the very recent advances in poly(monothiocarbonate)s derived from carbonyl sulfide (COS) and epoxides including biomass-derived epoxides. Of significance, metal-free catalyst systems, including triethyl borane/Lewis base pair and thiourea/Lewis base pair are developed for the alternating copolymerization of COS with epoxides. Thereof, the thiourea/Lewis base pair is highly active to the copolymerization of COS with epoxide in a living manner. Moreover, a series of crystalline poly(monothiocarbonate)s are presented, including the copolymers derived from COS with oxetane, ethylene oxide, enantiopure epichlorohydrin, and achiral meso-epoxides via enantioselective copolymerization. Based on these COS/epoxide copolymerization process, a variety of COS-based block copolymers with well-defined structure are presented.
  • 加载中
    1. [1]

      Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 2018, 118, 839-885.  doi: 10.1021/acs.chemrev.7b00329

    2. [2]

      Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. Nature 2016, 540, 354.  doi: 10.1038/nature21001

    3. [3]

      Raffa, P.; Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A. Polymeric surfactants: Synthesis, properties, and links to applications. Chem. Rev. 2015, 115, 8504-8563.  doi: 10.1021/cr500129h

    4. [4]

      Zhu, J. B.; Watson, E. M.; Tang, J.; Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 2018, 360, 398-403.  doi: 10.1126/science.aar5498

    5. [5]

      Hong, M.; Chen, J.; Chen, E. Y. X. Polymerization of polar monomers mediated by main-group Lewis acid–base pairs. Chem. Rev. 2018, 118, 10551-10616.  doi: 10.1021/acs.chemrev.8b00352

    6. [6]

      Mutlu, H.; Ceper, E. B.; Li, X.; Yang, J.; Dong, W.; Ozmen, M. M.; Theato, P. Sulfur chemistry in polymer and materials science. Macromol. Rapid Commun. 2019, 40, 1800650.  doi: 10.1002/marc.201800650

    7. [7]

      Sarapas, J. M.; Tew, G. N. Thiol-ene step-growth as a versatile route to functional polymers. Angew. Chem., Int. Ed. 2016, 55, 15860-15863.  doi: 10.1002/anie.201609023

    8. [8]

      Ochiai, B.; Endo, T. Carbon dioxide and carbon disulfide as resources for functional polymers. Prog. Polym. Sci. 2005, 30, 183-215.  doi: 10.1016/j.progpolymsci.2005.01.005

    9. [9]

      Luo, M.; Li, Y.; Zhang, Y. Y.; Zhang, X. H. Using carbon dioxide and its sulfur analogues as monomers in polymer synthesis. Polymer 2016, 82, 406-431.  doi: 10.1016/j.polymer.2015.11.011

    10. [10]

      He, L.; Zhao, H.; Theato, P. No heat, no light—the future of sulfur polymers prepared at room temperature is bright. Angew. Chem. Int. Ed. 2018, 57, 13012-13014  doi: 10.1002/anie.201807005

    11. [11]

      Yuan, J.; Xiong, W.; Zhou, X.; Zhang, Y.; Shi, D.; Li, Z.; Lu, H. 4-Hydroxyproline-derived sustainable polythioesters: Controlled ring-opening polymerization, complete recyclability, and facile functionalization. J. Am. Chem. Soc. 2019, 141, 4928-4935.  doi: 10.1021/jacs.9b00031

    12. [12]

      Qin, A.; Lam, J. W. Y.; Tang, B. Z. Click polymerization: progresses, challenges, and opportunities. Macromolecules 2010, 43, 8693-8702.  doi: 10.1021/ma101064u

    13. [13]

      Diebler, J.; Komber, H.; Häußler, L.; Lederer, A.; Werner, T. Alkoxide-initiated regioselective coupling of carbon disulfide and terminal epoxides for the synthesis of strongly alternating copolymers. Macromolecules 2016, 49, 4723-4731.  doi: 10.1021/acs.macromol.6b00728

    14. [14]

      Nakano, K.; Tatsumi, G.; Nozaki, K. Synthesis of sulfur-rich polymers: Copolymerization of episulfide with carbon disulfide by using PPN Cl/(salph)Cr(III)Cl system. J. Am. Chem. Soc. 2007, 129, 15116.  doi: 10.1021/ja076056b

    15. [15]

      Chung, W. J.; Simmonds, A. G.; Griebel, J. J.; Kim, E. T.; Suh, H. S.; Shim, I. B.; Glass, R. S.; Loy, D. A.; Theato, P.; Sung, Y. E.; Char, K.; Pyun, J. Elemental sulfur as a reactive medium for gold nanoparticles and nanocomposite materials. Angew. Chem. Int. Ed. 2011, 50, 11409-11412.  doi: 10.1002/anie.v50.48

    16. [16]

      Bearinger, J. P.; Terrettaz, S.; Michel, R.; Tirelli, N.; Vogel, H.; Textor, M.; Hubbell, J. A. Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat. Mater. 2003, 2, 259.  doi: 10.1038/nmat851

    17. [17]

      Napoli, A.; Valentini, M.; Tirelli, N.; Müller, M.; Hubbell, J. A. Oxidation-responsive polymeric vesicles. Nat. Mater. 2004, 3, 183.  doi: 10.1038/nmat1081

    18. [18]

      Lim, J.; Pyun, J.; Char, K. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials. Angew. Chem. Int. Ed. 2015, 54, 3249-3258.  doi: 10.1002/anie.201409468

    19. [19]

      Je, S. H.; Buyukcakir, O.; Kim, D.; Coskun, A. Direct utilization of elemental sulfur in the synthesis of microporous polymers for natural gas sweetening. Chem 2016, 1, 482-493.  doi: 10.1016/j.chempr.2016.08.003

    20. [20]

      Griebel, J. J.; Glass, R. S.; Char, K.; Pyun, J. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense. Prog. Polym. Sci. 2016, 58, 90-125.  doi: 10.1016/j.progpolymsci.2016.04.003

    21. [21]

      Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; Guralnick, B. W.; Park, J.; Somogyi, Á.; Theato, P.; Mackay, M. E.; Sung, Y. E.; Char, K.; Pyun, J. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 2013, 5, 518.  doi: 10.1038/nchem.1624

    22. [22]

      Sun, Z.; Huang, H.; Li, L.; Liu, L.; Chen, Y. Polythioamides of high refractive index by direct polymerization of aliphatic primary diamines in the presence of elemental sulfur. Macromolecules 2017, 50, 8505-8511.  doi: 10.1021/acs.macromol.7b01788

    23. [23]

      Tian, T.; Hu, R.; Tang, B. Z. Room temperature one-step conversion from elemental sulfur to functional polythioureas through catalyst-free multicomponent polymerizations. J. Am. Chem. Soc. 2018, 140, 6156-6163.  doi: 10.1021/jacs.8b02886

    24. [24]

      Li, W.; Wu, X.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Catalyst-free, atom-economic, multicomponent polymerizations of aromatic diynes, elemental sulfur, and aliphatic diamines toward luminescent polythioamides. Macromolecules 2015, 48, 7747-7754.

    25. [25]

      Luo, M.; Zhang, X. H.; Darensbourg, D. J. Poly(monothiocarbonate)s from the alternating and regioselective copolymerization of carbonyl sulfide with epoxides. Acc. Chem. Res. 2016, 49, 2209-2219.  doi: 10.1021/acs.accounts.6b00345

    26. [26]

      Rasmussen, R. A.; Khalil, M. A. K.; Dalluge, R. W.; Penkett, S. A.; Jones, B. Carbonyl sulfide and carbondisulfide from the eruptions of mount st-helens Science 1982, 215, 665-667.  doi: 10.1126/science.215.4533.665

    27. [27]

      Farrell, W. S.; Zavalij, P. Y.; Sita, L. R. Metal-catalyzed " on-demand” production of carbonyl sulfide from carbon monoxide and elemental sulfur. Angew. Chem. Int. Ed. 2015, 54, 4269-4273.  doi: 10.1002/anie.201410353

    28. [28]

      Coates, G. W.; Moore, D. R. Discrete metal-based catalysts for the copolymerization CO2 and epoxides: Discovery, reactivity, optimization, and mechanism. Angew. Chem. Int. Ed. 2004, 43, 6618-6639.  doi: 10.1002/(ISSN)1521-3773

    29. [29]

      Darensbourg, D. J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev. 2007, 107, 2388-2410.  doi: 10.1021/cr068363q

    30. [30]

      Lu, X. B.; Ren, W. M.; Wu, G. P. CO2 copolymers from epoxides: Catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 2012, 45, 1721-1735.  doi: 10.1021/ar300035z

    31. [31]

      Luo, M.; Zhang, X. H.; Du, B. Y.; Wang, Q.; Fan, Z. Q. Regioselective and alternating copolymerization of carbonyl sulfide with racemic propylene oxide. Macromolecules 2013, 46, 5899-5904.  doi: 10.1021/ma401114m

    32. [32]

      Ren, W. M.; Liu, Y.; Xin, A. X.; Fu, S.; Lu, X. B. Single-site bifunctional catalysts for COX (X = O or S)/epoxides copolymerization: Combining high Activity, selectivity, and durability. Macromolecules 2015, 48, 8445-8450.  doi: 10.1021/acs.macromol.5b02108

    33. [33]

      Gu, G. G.; Yue, T. J.; Wan, Z. Q.; Zhang, R.; Lu, X. B.; Ren, W. M. A single-site iron(III)-salan catalyst for converting COS to sulfur-containing polymers. Polymers 2017, 9, 515.  doi: 10.3390/polym9100515

    34. [34]

      Luo, M.; Zhang, X. H.; Darensbourg, D. J. Highly regioselective and alternating copolymerization of carbonyl sulfide with phenyl glycidyl ether. Polym. Chem. 2015, 6, 6955-6958.  doi: 10.1039/C5PY01197C

    35. [35]

      Luo, M.; Zhang, X. H.; Darensbourg, D. J. An investigation of the pathways for oxygen/sulfur scramblings during the copolymerization of carbon disulfide and oxetane. Macromolecules 2015, 48, 5526-5532.  doi: 10.1021/acs.macromol.5b01251

    36. [36]

      Luo, M.; Zhang, X. H.; Du, B. Y.; Wang, Q.; Fan, Z. Q. Well-defined high refractive index poly(monothiocarbonate) with tunable Abbe's numbers and glass-transition temperatures via terpolymerization. Polym. Chem. 2015, 6, 4978-4983.  doi: 10.1039/C5PY00773A

    37. [37]

      Luo, M.; Zhang, X. H.; Darensbourg, D. J. An examination of the steric and electronic effects in the copolymerization of carbonyl sulfide and styrene oxide. Macromolecules 2015, 48, 6057-6062.  doi: 10.1021/acs.macromol.5b01427

    38. [38]

      Luo, M.; Zhang, X. H.; Du, B. Y.; Wang, Q.; Fan, Z. Q. Alternating copolymerization of carbonyl sulfide and cyclohexene oxide catalyzed by zinc-cobalt double metal cyanide complex. Polymer 2014, 55, 3688-3695.  doi: 10.1016/j.polymer.2014.05.065

    39. [39]

      Zhang, C. J.; Yang, J. L.; Hu, L F.; Zhang, X. H. Anionic copolymerization of carbonyl sulfide with epoxides via alkali metal alkoxides. Chin. J. Chem. 2018, 36, 625-626.  doi: 10.1002/cjoc.v36.7

    40. [40]

      Hu, S.; Zhao, J.; Zhang, G.; Schlaad, H. Macromolecular architectures through organocatalysis. Prog. Polym. Sci. 2017, 74, 34-77.  doi: 10.1016/j.progpolymsci.2017.07.002

    41. [41]

      Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 2016, 56, 64-115.  doi: 10.1016/j.progpolymsci.2015.12.001

    42. [42]

      Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L. Triazabicyclodecene:  A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 2006, 128, 4556-4557.  doi: 10.1021/ja060662+

    43. [43]

      MacMillan, D. W. C. The advent and development of organocatalysis. Nature 2008, 455, 304.  doi: 10.1038/nature07367

    44. [44]

      Kiesewetter, M. K.; Shin, E. J.; Hedrick, J. L.; Waymouth, R. M. Organocatalysis: Opportunities and challenges for polymer synthesis Macromolecules 2010, 43, 2093-2107.

    45. [45]

      Zhang, C. J.; Hu, L. F.; Wu, H. L.; Cao, X. H.; Zhang, X. H. Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules 2018, 51, 8705-8711.  doi: 10.1021/acs.macromol.8b01757

    46. [46]

      Zhang, C.; Duan, H.; Hu, L.; Zhang, C.; Zhang, X. Metal-free route to precise synthesis of poly(propylene oxide) and its blocks with high activity. ChemSusChem 2018, 11, 4209-4213.  doi: 10.1002/cssc.v11.24

    47. [47]

      Yang, J. L.; Wu, H. L.; Li, Y.; Zhang, X. H.; Darensbourg, D. J. Perfectly alternating and regioselective copolymerization of carbonyl sulfide and epoxides by metal-free Lewis pairs. Angew. Chem. Int. Ed. 2017, 56, 5774-5779.  doi: 10.1002/anie.201701780

    48. [48]

      Zhang, C. J.; Wu, H. L.; Li, Y.; Yang, J. L.; Zhang, X. H. Precise synthesis of sulfur-containing polymers via cooperative dual organocatalysts with high activity. Nat. Commun. 2018, 9, 2137.  doi: 10.1038/s41467-018-04554-5

    49. [49]

      Yue, T. J.; Ren, W. M.; Liu, Y.; Wan, Z. Q.; Lu, X. B. Crystalline polythiocarbonate from stereoregular copolymerization of carbonyl sulfide and epichlorohydrin. Macromolecules 2016, 49, 2971-2976.  doi: 10.1021/acs.macromol.6b00272

    50. [50]

      Wu, H. L.; Yang, J. L.; Luo, M.; Wang, R. Y.; Xu, J. T.; Du, B. Y.; Zhang, X. H.; Darensbourg, D. J. Poly(trimethylene monothiocarbonate) from the alternating copolymerization of COS and oxetane: A semicrystalline copolymer. Macromolecules 2016, 49, 8863-8868.  doi: 10.1021/acs.macromol.6b02285

    51. [51]

      Zhang, X. H.; Liu, F.; Sun, X. K.; Chen, S.; Du, B. Y.; Qi, G. R.; Wan, K. M. Atom-exchange coordination polymerization of carbon disulfide and propylene oxide by a highly effective double-metal cyanide complex. Macromolecules 2008, 41, 1587-1590.  doi: 10.1021/ma702290g

    52. [52]

      Ren, W. M.; Yue, T. J.; Li, M. R.; Wan, Z. Q.; Lu, X. B. Crystalline and elastomeric poly(monothiocarbonate)s prepared from copolymerization of COS and achiral epoxide. Macromolecules 2017, 50, 63-68.  doi: 10.1021/acs.macromol.6b02089

    53. [53]

      Cao, X. H.; Yang, J. L.; Wu, H. L.; Wang, R. Y.; Zhang, X. H.; Xu, J. T. Crystallization behavior and morphology of novel aliphatic poly(monothiocarbonate)s. Polymer 2019, 165, 112-123.  doi: 10.1016/j.polymer.2019.01.030

    54. [54]

      Takahashi, Y.; Kojima, R. Crystal structure of poly(trimethylene carbonate). Macromolecules 2003, 36, 5139-5143.  doi: 10.1021/ma030076q

    55. [55]

      Yue, T. J.; Ren, W. M.; Chen, L.; Gu, G. G.; Liu, Y.; Lu, X. B. Synthesis of chiral sulfur-containing polymers: Asymmetric copolymerization of meso-epoxides and carbonyl sulfide. Angew. Chem. Int. Ed. 2018, 130, 12852-12856.  doi: 10.1002/ange.201805200

    56. [56]

      Bates, C. M.; Bates, F. S. 50th anniversary perspective: Block polymers—pure potential. Macromolecules 2017, 50, 3-22.  doi: 10.1021/acs.macromol.6b02355

    57. [57]

      Li, Y.; Duan, H. Y.; Luo, M.; Zhang, Y. Y.; Zhang, X. H.; Darensbourg, D. J. Mechanistic study of regio-defects in the copolymerization of propylene oxide/carbonyl sulfide catalyzed by (Salen)CrX Complexes. Macromolecules 2017, 50, 8426-8437.  doi: 10.1021/acs.macromol.7b01867

    58. [58]

      Yang, J. L.; Cao, X. H.; Zhang, C. J.; Wu, H. L.; Zhang, X. H. Highly efficient one-pot synthesis of COS-based block copolymers by using organic Lewis pairs. Molecules 2018, 23, 298.  doi: 10.3390/molecules23020298

    59. [59]

      Wang, Z.; Yuan, L.; Tang, C. Sustainable elastomers from renewable biomass. Acc. Chem. Res. 2017, 50, 1762-1773.  doi: 10.1021/acs.accounts.7b00209

    60. [60]

      Hu, L. F.; Li, Y.; Liu, B.; Zhang, Y. Y.; Zhang, X. H. Alternating and regioregular copolymers with high refractive index from COS and biomass-derived epoxides. RSC Adv. 2017, 7, 49490-49497.  doi: 10.1039/C7RA08958A

  • 加载中
    1. [1]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    4. [4]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    5. [5]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    6. [6]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    7. [7]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    8. [8]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    9. [9]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    10. [10]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    11. [11]

      Dongsheng YangZixin LiYaoyao LianZiyao FuTianjiao LiPengtao MaGuoping Yang . A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone. Chinese Chemical Letters, 2025, 36(3): 109717-. doi: 10.1016/j.cclet.2024.109717

    12. [12]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    13. [13]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    14. [14]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    15. [15]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    16. [16]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    17. [17]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    18. [18]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    19. [19]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    20. [20]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

Metrics
  • PDF Downloads(0)
  • Abstract views(857)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return