Citation: Wei-Qiang Fu, Gui-Nan Zhu, Jian-Bing Shi, Bin Tong, Zheng-Xu Cai, Yu-Ping Dong. Synthesis and Properties of Photodegradable Poly(furan-amine)s by a Catalyst-free Multicomponent Cyclopolymerization[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 981-989. doi: 10.1007/s10118-019-2281-5 shu

Synthesis and Properties of Photodegradable Poly(furan-amine)s by a Catalyst-free Multicomponent Cyclopolymerization

  • Corresponding author: Jian-Bing Shi, bing@bit.edu.cn Yu-Ping Dong, chdongyp@bit.edu.cn
  • Received Date: 20 March 2019
    Revised Date: 16 April 2019
    Available Online: 20 June 2019

  • A series of new photodegradable poly(furan-amine)s (PFAs) were synthesized by a one-pot, catalyst-free, multicomponent cyclopolymerization between diisocyanides, dialkylacetylene dicarboxylates, and aromatic dialdehydes. All polymerizations were conducted in toluene at 100 °C for 6 h without inert gas protection and furnished polymers with a satisfactory molecular weight (Mw up to 32200) and yield. The PFA structure was confirmed by spectroscopic techniques, such as GPC, FTIR, and NMR, as well as by comparison with a model compound. The polymers exhibited good solubility in common organic solvents and thermal stability. All the PFAs had high refractive indices in the visible light region (400 nm to 800 nm). Moreover, the PFAs were substantially degraded by UV irradiation due to the presence of furan rings. The film thickness reduction rate could be over 90%.
  • 加载中
    1. [1]

      Nayanathara, U.; Kottegoda, N.; Perera, I. C.; Mudiyanselage, T. K. Synthesis, photodegradable and antibacterial properties of polystyrene-cinnamaldehyde copolymer film. Polym. Degrad. Stab. 2018, 155, 195-207.  doi: 10.1016/j.polymdegradstab.2018.07.021

    2. [2]

      Pan, G. Y.; Jia, H. R.; Zhu, Y. X.; Wu, F. G. Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imaging-guided photothermal cancer therapy. Nanoscale 2018, 10, 2115-2127.  doi: 10.1039/C7NR07495F

    3. [3]

      Fairbanks, B. D.; Singh, S. P.; Bowman, C. N.; Anseth, K. S. Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 2011, 44, 2444-2450.  doi: 10.1021/ma200202w

    4. [4]

      Cao, Z.; Li, Q.; Wang, G. , Photodegradable polymer nanocapsules fabricated from dimethyldiethoxysilane emulsion templates for controlled release. Polym. Chem. 2017, 8, 6817-6823.  doi: 10.1039/C7PY01153A

    5. [5]

      Käpyla, E.; Delgado, S. M.; Kasko, A. M. Shape-changing photodegradable hydrogels for dynamic 3D cell culture. ACS Appl. Mater. Interfaces 2016, 8, 17885-17893.  doi: 10.1021/acsami.6b05527

    6. [6]

      McKinnon, D. D.; Brown, T. E.; Kyburz, K. A.; Kiyotake, E.; Anseth, K. S. Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks. Biomacromolecules 2014, 15, 2808-2816.  doi: 10.1021/bm500731b

    7. [7]

      Manouras, T.; Vamvakaki, M. Field responsive materials: photo-, electro-, magnetic- and ultrasound- sensitive polymers. Polym. Chem. 2017, 8, 74-96.  doi: 10.1039/C6PY01455K

    8. [8]

      Yang, F. C.; Wang, J.; Chen, L.; Wang, X.; Chen, X. Y.; Zhang, X. Soluble and degradable polyimides with phenyl-2-pyridyl ether structure: synthesis and characterization. Chinese J. Polym. Sci. 2015, 33, 481-489.  doi: 10.1007/s10118-015-1602-6

    9. [9]

      Liu, Y.; Yuan, J.; Zou, Y.; Li, Y. Research progress of the furan-containing fused ring conjugated organic molecules and polymers. Acta Chim. Sin. 2017, 75, 257-270.  doi: 10.6023/A16090495

    10. [10]

      Hu, Y.; Han, T.; Yan, N.; Liu, J.; Liu, X.; Wang, W. X.; Lam, J. W. Y.; Tang B. Z. Visualization of biogenic amines and in vivo ratiometric mapping of intestinal pH by AIE-active polyheterocycles synthesized by metal-free multicomponent polymerizations. Adv. Funct. Mater. 2019, 1902240.  doi: 10.1002/adfm.201902240

    11. [11]

      Wang, F.; Gu, H.; Swager, T. M. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J. Am. Chem. Soc. 2008, 130, 5392-5393.  doi: 10.1021/ja710795k

    12. [12]

      Afzal, A.; Abuilaiwi, F. A.; Habib, A.; Awais, M.; Waje, S. B.; Atieh, M. A. Polypyrrole/carbon nanotube supercapacitors: Technological advances and challenges. J. Power Sources 2017, 352, 174-186.  doi: 10.1016/j.jpowsour.2017.03.128

    13. [13]

      Tibaoui, T.; Zaidi, B.; Bouachrine, M.; Paris, M.; Alimi, K. A study of polymers obtained by oxidative coupling of furan monomers. Synth. Met. 2011, 161, 2220-2225.  doi: 10.1016/j.synthmet.2011.07.007

    14. [14]

      Yeh, I. C.; Rinderspacher, B. C.; Andzelm, J. W.; Cureton, L. T.; La Scala, J. Computational study of thermal and mechanical properties of nylons and bio-based furan polyamides. Polymer 2014, 55, 166-174.  doi: 10.1016/j.polymer.2013.11.009

    15. [15]

      Streifel, B. C.; Martínez Hardigree, J. F.; Katz, H. E.; Tovar, J. D. Heteroaromatic variation in amorphous 1, 6-methano[10]annulene-based charge-transporting organic semiconductors. J. Mater. Chem. C 2014, 2, 7851-7858.  doi: 10.1039/C4TC01326C

    16. [16]

      Sousa, A. F.; Vilela, C.; Fonseca, A. C.; Matos, M.; Freire, C. S. R.; Gruter, G. -J. M.; Coelho, J. F. J.; Silvestre, A. J. D. Biobased polyesters and other polymers from 2, 5-furandicarboxylic acid: a tribute to furan excellency. Polym. Chem. 2015, 6, 5961-5983.  doi: 10.1039/C5PY00686D

    17. [17]

      Kaur, S.; Findlay, N. J.; Coomer, F. C.; Berridge, R.; Skabara, P. J. Poly([1, 4]dithiino[2, 3-c]Furan): The synthesis, electrochemistry, and optoelectronic properties of a furan-containing polymer. Macromol. Rapid Commun. 2013, 34, 1330-1334.  doi: 10.1002/marc.v34.16

    18. [18]

      Song, B.; Hu, K.; Qin, A.; Tang, B. Z. Oxygen as a crucial comonomer in alkyne-based polymerization toward functional poly(tetrasubstituted furan)s. Macromolecules 2018, 51, 7013-7018.  doi: 10.1021/acs.macromol.8b01293

    19. [19]

      Deng, H.; Hu, R. Zhao, E.; Chan, C. Y. K.; Lam, J. W. Y.; Tang, B. Z. One-pot three-component tandem polymerization toward functional poly(arylene thiophenylene) with aggregation-enhanced emission characteristics. Macromolecules 2014, 47, 4920-4929.  doi: 10.1021/ma501190g

    20. [20]

      Huang, Y.; Chen, P.; Wei, B.; Hu, R.; Tang, B. Z. Aggregation-induced emission-active hyperbranched poly(tetrahydropyrimidine)s synthesized from multicomponent tandem polymerization. Chinese J. Polym. Sci. 2019, 37, 428-436.  doi: 10.1007/s10118-019-2230-3

    21. [21]

      Hu, R.; Li, W.; Tang, B, Z. Recent advances in alkyne-based multicomponent polymerizations. Macromol. Chem. Phys. 2016, 217, 213-224.  doi: 10.1002/macp.201500291

    22. [22]

      Kayser, L, V.; Vollmer, M.; Welnhofer, M.; Krikcziokat, H.; Meerholz, K.; Arndtsen, B, A. Metal-free, multicomponent synthesis of pyrrole-based π-conjugated polymers from imines, acid chlorides, and alkynes. J. Am. Chem. Soc. 2016, 138, 10516–10521.  doi: 10.1021/jacs.6b05035

    23. [23]

      Fu, W.; Dong, L.; Shi, J.; Tong, B.; Cai, Z.; Zhi J.; Dong, Y. Synthesis of polyquinolines via one-pot polymerization of alkyne, aldehyde, and aniline under metal-free catalysis and their properties. Macromolecules 2018, 51, 3254-3263.  doi: 10.1021/acs.macromol.7b02494

    24. [24]

      Liu, Y.; Qin, A.; Tang, B. Z. Polymerizations based on triple-bond building blocks. Prog. Polym. Sci. 2018, 78, 92-138.  doi: 10.1016/j.progpolymsci.2017.09.004

    25. [25]

      Fu, W.; Dong, L.; Shi, J.; Tong, B.; Cai, Z.; Zhi J.; Dong, Y. Multicomponent spiropolymerization of diisocyanides, alkynes and carbon dioxide for constructing 1, 6-dioxospiro[4, 4]nonane-3, 8-diene as structural units under one-pot catalyst-free conditions. Polym. Chem. 2018, 9, 5543-5550.  doi: 10.1039/C8PY01336E

    26. [26]

      Deng, X. X.; Li, L.; Li, Z. L.; Lv, A.; Du, F. S.; Li, Z. C. Sequence regulated poly(ester-amide)s based on passerini reaction. ACS Macro Lett. 2012, 1, 1300−1303.  doi: 10.1021/mz300456p

    27. [27]

      Fu, W.; Kong, L.; Shi, J.; Tong, B.; Cai, Z.; Zhi J.; Dong, Y. Synthesis of poly(amine-furan-arylene)s through a one-pot catalyst-free in situ cyclopolymerization of diisocyanide, dialkylacetylene dicarboxylates and dialdehyde. Macromolecules 2019, 52, 729-737.  doi: 10.1021/acs.macromol.8b02251

    28. [28]

      Mao, L.; Sakurai, H.; Hirao, T. Facile Synthesis of 2, 3-Disubstituted Quinoxalines by Suzuki-Miyaura Coupling. Synthesis 2004, 15, 2535-2539.

    29. [29]

      Sandmann, B.; Happ, B.; Vitz, J.; Paulus, R. M.; Hager, M. D.; Burtscher, P.; Moszner, N.; Schubert, U. S. Metal-Free cycloaddition of internal alkynes and multifunctional azides under solvent-free conditions. Macromol. Chem. Phys. 2014, 215, 1603-1608.  doi: 10.1002/macp.v215.17

    30. [30]

      Song, B.; He, B.; Qin, A.; Tang, B. Z. Direct polymerization of carbon dioxide, diynes, and alkyl dihalides under mild reaction conditions. Macromolecules 2017, 51, 42-48.  doi: 10.1021/acs.macromol.7b02109

    31. [31]

      We, B.; Li, W.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B, Z. Metal-free multicomponent tandem polymerizations of alkynes, amines, and formaldehyde toward structure- and sequence- controlled luminescent polyheterocycles. J. Am. Chem. Soc. 2017, 139, 5075-5084.  doi: 10.1021/jacs.6b12767

    32. [32]

      Alizadeh, A.; Rostamnia, S.; Zhu, L. G. Competition of the R3P/DAAD and RNC/DAAD zwitterions in their production and reaction with aromatic carboxylic acids: a novel binucleophilic system for three-component synthesis of 2-aminofurans. Synthesis 2008, 2008 (11), 1788-1792.  doi: 10.1055/s-2008-1067028

    33. [33]

      Urdl, K.; Weiss, S.; Karpa, A.; Perić, M.; Zikulnig-Rusch, E.; Brecht, M.; Kandelbauer, A.; Müller, U.; Kern, W. Furan-functionalised melamine-formaldehyde particles performing Diels-Alder reactions. Eur. Polym. J. 2018, 108, 225-234.  doi: 10.1016/j.eurpolymj.2018.08.023

    34. [34]

      Suzuki, Y.; Higashihara, T.; Ando, S.; Ueda, M. Synthesis and characterization of high refractive index and high abbe’s number poly(thioether sulfone)s based on tricyclo[5. 2. 1. 02, 6]decane moiety. Macromolecules 2012, 45, 3402-3408.  doi: 10.1021/ma300379w

    35. [35]

      Cai, Z.; Zhang, Y.; Song, Y.; Cheng, Q.; Zheng, Y.; Cui, Z.; Shi, Z.; Chen, C.; Zhang, D. Optically transparent fluorine-containing polycarbonates with high refractive indices for thermo-optic switches. Mater. Chem. Front. 2017, 1, 2031-2038.  doi: 10.1039/C7QM00209B

    36. [36]

      Faurie, A.; Mallet, C.; Allain, M.; Skene, W. G.; Frère, P. Topological and packing mode modification for solid-state emission enhancement of bis(perfluorostyryl)furan derivatives. New J. Chem. 2016, 40, 6728-6734.  doi: 10.1039/C5NJ03561A

    37. [37]

      Qiu, Z.; Liu, X.; Lam, J. W. Y.; Tang, B. Z. The marriage of aggregation-induced emission with polymer science. Macromol. Rapid Commun. 2019, 40, 1800568.  doi: 10.1002/marc.201800568

    38. [38]

      Hu, R.; Xin, D. H.; Qin, A. J.; Tang, B. Z. Polymers with aggregation-induced emission characteristics. Acta Polymerica Sinica (in Chinese) 2018, 18, 132-144.

    39. [39]

      Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W. Organic photoresponse materials and devices. Chem. Soc. Rev. 2012, 41, 1754-1808.  doi: 10.1039/C1CS15205J

    40. [40]

      Yildirim, Y. Influence of g-ray irradiation on the thermal stability and conductivity of polyfuran. Asian J. Chem. 2013, 25, 7582-7586.  doi: 10.14233/ajchem

    41. [41]

      Christensen, E.; Fioroni, G. M.; Kim, S.; Fouts, L.; Gjersing, E.; Paton, R. S.; McCormick, R. L. Experimental and theoretical study of oxidative stability of alkylated furans used as gasoline blend components. Fuel 2018, 212, 576-585.  doi: 10.1016/j.fuel.2017.10.066

  • 加载中
    1. [1]

      Shukun LePeng WangYuhao LiuMutao XuQuansheng LiuQijie JinJie MiaoChengzhang ZhuHaitao Xu . High-efficiency Fe(Ⅲ)-doped ultrathin VO2 nanobelts boosted peroxydisulfate activation for actual antibiotics photodegradation. Chinese Chemical Letters, 2025, 36(3): 110087-. doi: 10.1016/j.cclet.2024.110087

    2. [2]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    3. [3]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    4. [4]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    5. [5]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    6. [6]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    7. [7]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    8. [8]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    9. [9]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    10. [10]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    11. [11]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    12. [12]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    13. [13]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    14. [14]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    15. [15]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    16. [16]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    17. [17]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    18. [18]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    19. [19]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    20. [20]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

Metrics
  • PDF Downloads(0)
  • Abstract views(839)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return