Citation: Elena N. Danilovtseva, Stanislav N. Zelinskiy, Viktor A. Pal'shin, Gayathri Kandasamy, Uma Maheswari Krishnan, Vadim V. Annenkov. Poly(1-vinylimidazole) Prospects in Gene Delivery[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 637-645. doi: 10.1007/s10118-019-2240-1 shu

Poly(1-vinylimidazole) Prospects in Gene Delivery

  • Corresponding author: Vadim V. Annenkov, annenkov@lin.irk.ru
  • Received Date: 11 December 2018
    Revised Date: 11 February 2019
    Available Online: 26 March 2019

  • Polymeric amines are being studied intensively as components of systems for gene delivery in genetic engineering and gene therapy of genetic disorders, including cancer. Despite remarkable achievements in the field, polymeric amines, such as polyethyleneimine, show some disadvantages. Strong interaction between the amine-containing polymer and nucleic acid hampers the release of nucleic acid in the cell cytoplasm. Amine groups can interact with the cell membrane which results in cell death. These limitations of polymeric amines stimulated an investigation of new structures for gene delivery. Imidazole-containing polymers have attracted attention as lesser basic substances, while they are able to interact with polymeric acids. Further development of imidazole-based gene delivery agents requires knowledge about some fundamental aspects of interaction between nucleic acids, and polymeric imidazoles. In this work, we studied the complexation of poly(1-vinylimidazole) and oligomeric DNA. We found that the number of active sites capable of binding with negatively charged phosphate groups is comparable with the number of protonated imidazole units in the case of high molecular weight polymer. The increase in polymer charge by 1-bromopropane quaternizating 1%−5% imidazole units or by decreasing the pH to 6.5−7 considerably increased the ability of poly(1-vinylimidazole) to interact with oligonucleotides. The pH sensitivity of this interaction is interesting for cancer gene therapy because the tumours have a lowered intercellular pH (stable oligonucleotide complex) and a higher extracellular pH which can lead to complex dissociation. Minimal critical length for complexation of quaternized poly(1-vinylimidazole) and DNA is below eight units which corresponds to polymers with amine groups. Fluorescence-tagged poly(1-vinylimidazole) samples were obtained and their potential for monitoring the polymer and polymer-oligonucleotide complex internalization into living cells was demonstrated.
  • 加载中
    1. [1]

      Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D. A.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo - polyethylenimine. Proc. Natl. Acad. Sci. 1995, 92, 7297-7301.  doi: 10.1073/pnas.92.16.7297

    2. [2]

      Fischera, D.; Lib, Y.; Ahlemeyerc, B.; Krieglsteinc, J.; Kissel, T. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials 2003, 24, 1121-1131.  doi: 10.1016/S0142-9612(02)00445-3

    3. [3]

      Miao, H.; Wang, Y. F.; Dong, H. Y.; Chen, D. Y. Complexation induced by weak interaction between DNA and PEO-b-P4VP below the CMC of the polymer. Chinese J. Polym. Sci. 2017, 35(1) 46−53.  doi: 10.1007/s10118-016-1857-6

    4. [4]

      Annenkov, V. V.; Danilovtseva, E. N.; Saraev, V. V.; Mikhaleva, A. I. Complexation of copper(II) ions with imidazole-carboxylic polymeric systems. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2256-2263.  doi: 10.1002/(ISSN)1099-0518

    5. [5]

      Asayama, S.; Sekine, T.; Kawakami, H.; Nagaoka, S. Design of aminated poly(1-vinylimidazole) for a new pH-sensitive polycation to enhance cell-specific gene delivery. Bioconjugate Chem. 2007, 18, 1662-1667.  doi: 10.1021/bc700205t

    6. [6]

      Dulea, M.; Biswasa, M.; Biswasa, Y.; Mandal, K.; Jana, N. R.; Mandal, T. K. Cysteine-based amphiphilic peptide-polymer conjugates via thiol-mediated radical polymerization: Synthesis, self-assembly, RNA polyplexation and N-terminus fluorescent labeling for cell imaging. Polymer 2017, 112, 125-135.  doi: 10.1016/j.polymer.2017.01.083

    7. [7]

      Ihm, J. E.; Han, K. O.; Han, I. K.; Ahn, K. D.; Han, D. K.; Cho, C. S. High transfection efficiency of poly(4-vinylimidazole) as a new gene carrier. Bioconjugate Chem. 2003, 14, 707−708.  doi: 10.1021/bc025611q

    8. [8]

      Ihm, J. E.; Han, K. O.; Hwang, C. S.; Kang, J. H.; Ahn, K. D.; Han, I. K.; Han, D. K.; Hubbell, J. A.; Cho, C. S. Poly (4- vinylimidazole) as nonviral gene carrier: In vitro and in vivo transfection. Acta Biomater. 2005, 1, 165-172.  doi: 10.1016/j.actbio.2004.12.002

    9. [9]

      Asayama, S.; Nishinohara, S.; Kawakami, H. Zinc-chelated imidazole groups for DNA polyion complex formation. Metallomics, 2011, 680-682.

    10. [10]

      Asayama, S.; Matsuda, K.; Negishiband, Y.; Kawakami, H. Intracellular co-delivery of zinc ions and plasmid DNA for enhancing gene transfection activity. Metallomics 2014, 6, 82-87.  doi: 10.1039/C3MT00226H

    11. [11]

      Asayama, S.; Hakamatani, T.; Kawakami, H. Synthesis and characterization of alkylated poly(1-vinylimidazole) to control the stability of its DNA polyion complexes for gene delivery. Bioconjugate Chem. 2010, 21, 646-652.  doi: 10.1021/bc900411m

    12. [12]

      Shuai, X.; Merdan, T.; Unger, F.; Kissel, T. Supramolecular gene delivery vectors showing enhanced transgene expression and good biocompatibility. Bioconjugate Chem. 2005, 16, 322-329.  doi: 10.1021/bc0498471

    13. [13]

      Pouton, C. W.; Lucas, P.; Thomas, B. J.; Uduehi, A. N.; Milroy, D. A.; Moss, S. H. Polycation-DNA complexes for gene delivery: A comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J. Control. Release 1998, 53, 289-299.  doi: 10.1016/S0168-3659(98)00015-7

    14. [14]

      Asayama, S.; Seno, K.; Kawakami, H. Synthesis of carboxymethyl poly(1-vinylimidazole) as a polyampholyte for biocompatibility. Chem. Lett. 2013, 42, 358-360.  doi: 10.1246/cl.121263

    15. [15]

      Allen, M. H.; Day, K. N.; Hemp, S. T.; Long, T. E. Synthesis of folic acid-containing imidazolium copolymers for potential gene delivery applications. Macromol. Chem. Phys. 2013, 214, 797−805.  doi: 10.1002/macp.v214.7

    16. [16]

      Asayama, S.; Nishinohara, S.; Kawakami, H. Zinc-chelated poly(1-vinylimidazole) and a carbohydrate ligand polycation form DNA ternary complexes for gene delivery. Bioconjugate Chem. 2011, 22, 1864-1868.  doi: 10.1021/bc2003378

    17. [17]

      Dréan, M.; Debuigne, A.; Jérôme, C.; Goncalves, C.; Midoux, P.; Rieger, J.; Guégan, P. Poly(N-methylvinylamine)-based copolymers for improved gene transfection. Macromol. Biosci. 2018, 1700353.

    18. [18]

      Pack, D. W.; Putnam, D.; Langer, R. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol. Bioeng. 2000, 67(2), 217-23.  doi: 10.1002/(ISSN)1097-0290

    19. [19]

      Sakurai, M.; Imai, T.; Yamashita, F. Temperature dependence of viscosities and potentiometric titration behavior of poly(n-vinylimidazole) in aqueous salt solutions. Polym. J. 1994, 26, 658-664.  doi: 10.1295/polymj.26.658

    20. [20]

      Annenkov, V. V.; Danilovtseva, E. N.; Likhoshway, Y. V.; Patwardhanand, S. V.; Perry, C. C. Controlled stabilisation of silicic acid below pH 9 using poly(1-vinylimidazole). J. Mater. Chem. 2008, 18, 553-559.  doi: 10.1039/B716367N

    21. [21]

      Eskin, V. E.; Magarik, S. Y.; Zhuraev, U. B.; Rudkovskaya, G. D. Light-scattering, viscosity and dynamic birefringence of poly-normal-vinylimidazole solutions. Vysokomol. Soedin., Ser. A 1978, 20, 2219-2223.

    22. [22]

      Du, X. L.; Zhang, H. S.; Deng, Y. H ; Wang, H. Design and synthesis of a novel fluorescent reagent, 6-oxy-(ethylpiperazine)-9-(2-methoxycarbonyl) fluorescein, for carboxylic acids and its application in food samples using high-performance liquid chromatography. J. Chromatogr. A, 2008, 1178, 92-100.

    23. [23]

      Zelinskiy, S. N.; Danilovtseva, E. N.; Pal'shin, V. A.; Krishnan, U. M.; Annenkov, V. V. Reagents for labeling with pH-independent fluorescein-based tags. Arkivoc 2018, vii.

    24. [24]

      Mazyar, N. L.; Annenkov, V. V.; Kruglova, V. A.; Ananiev, S. M.; Danilotseva, E. N.; Rokhin, A. V.; Zinchenko, S. V. Acid-base properties of poly(1-vinylazoles) in aqueous solution. Russ. Chem. Bull. 2000, 4912, 2013-2017.

    25. [25]

      Sandeli, E. B.; West, T. S. Recommended nomenclature for titrimetric analysis. Pure Appl. Chem., 1969, 18, 427-436.

    26. [26]

      Henrichs, P. M.; Whitlock, L. R.; Sochor, A. R.; Tan, J. S. Conformational behavior of poly(n-vinylimidazole)-potentiometric titration, viscosity, and proton nuclear magnetic resonance studies. Macromolecules 1980, 13, 1375-1381.  doi: 10.1021/ma60078a009

    27. [27]

      Annenkov, V. V.; Danilovtseva, E. N.; Tenhu, H.; Aseyev, V.; Hirvonen, S. P.; Mikhaleva, A. I. Copolymers of 1-vinylimidazole and (meth)acrylic acid: Synthesis and polyelectrolyte properties Eur. Polym. J. 2004, 40, 1027-1032.  doi: 10.1016/j.eurpolymj.2003.12.014

    28. [28]

      Annenkov, V. V.; Krishnan, U. M.; Pal’shin, V. A.; Zelinskiy, S. N.; Kandasamy, G.; Danilovtseva, E. N. Design of the oligonucleotide carriers: Importance of polyamine chain length Polymers 2018, 10(12), 1297.  doi: 10.3390/polym10121297

    29. [29]

      Basché, T.; Müllen, K.; Schmidt, M. From single molecules to nanoscopically structured materials. Adv. Polym. Sci. 2014, 260, 1-288.

    30. [30]

      Yoshikawa, K. Controlling the higher-order structure of giant DNA molecules. Adv. Drug Delivery Rev. 2001, 52, 235-244.  doi: 10.1016/S0169-409X(01)00210-1

    31. [31]

      Tsuchida, E.; Abe, K. Interactions between macromolecules in solution and intermacromolecular complexes. Adv. Polym. Sci. 1982, 45, 15-130. DOI: 10.1007/BFb0017549.  doi: 10.1007/BFb0017549

    32. [32]

      Shirmanova, M. V.; Druzhkova, I. N.; Lukina, M. M.; Matlashov, M. E.; Belousov, V. V.; Snopova, L. B.; Prodanetz, N.; Dudenkova, V. V.; Lukyanov, S. A.; Zagaynova, E. V. Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2. Biochim. Biophys. Acta 2015, 1850, 1905-1911.  doi: 10.1016/j.bbagen.2015.05.001

    33. [33]

      Heiden, M. G. V.; Cantley, L. C.; Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324(5930), 1029-1033.  doi: 10.1126/science.1160809

    34. [34]

      Lu, Z. N.; Tian, B.; Guo, X. L. Repositioning of proton pump inhibitors in cancer therapy. Cancer Chemother. Pharmacol. 2017, 80, 925-937.  doi: 10.1007/s00280-017-3426-2

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    3. [3]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    4. [4]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    5. [5]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    6. [6]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    7. [7]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    8. [8]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    9. [9]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    10. [10]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    11. [11]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    12. [12]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    13. [13]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    14. [14]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    15. [15]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    16. [16]

      Ling YangMin RenJie WangLiming HeShanshan WuShuai YangWei ZhaoHao ChengXiaoming ZhouMaling Gou . A non-viral gene therapy for melanoma by staphylococcal enterotoxin A. Chinese Chemical Letters, 2024, 35(5): 108822-. doi: 10.1016/j.cclet.2023.108822

    17. [17]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    18. [18]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    19. [19]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    20. [20]

      Makhloufi ZoulikhaZhongjian ChenJun WuWei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225

Metrics
  • PDF Downloads(0)
  • Abstract views(788)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return