Citation: Bin Chen, Bao-Jia Ni, Meng-Xiang Fu, Hang Zhong, Wei-Feng Jiang, Si-Yuan Liu, He-Xin Zhang, Keun-Byoung Yoon. Effect of Molybdenum Disulfide Exfoliation Conditions on the Mechanical Properties of Epoxy Nanocomposites[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 687-692. doi: 10.1007/s10118-019-2239-7 shu

Effect of Molybdenum Disulfide Exfoliation Conditions on the Mechanical Properties of Epoxy Nanocomposites

  • Corresponding author: Bin Chen, 13080896558@163.com He-Xin Zhang, polyhx@ciac.ac.cn Keun-Byoung Yoon, 
  • Received Date: 25 December 2018
    Revised Date: 25 January 2019
    Available Online: 26 March 2019

  • In this work, the MoS2 fillers were prepared through chemical exfoliation method and used as fillers to fabricate epoxy (EP)/MoS2 nanocomposites. The effects of molybdenum disulfide (MoS2) intercalation conditions on the properties of EP/MoS2 nanocomposites were investigated. As the intercalation time was prolonged, the surface of MoS2 exhibited a totally crumpled structure and more functional groups formed. Because of the higher functional group concentration, the interfacial adhesion force between EP and MoS2 was enhanced. With the addition of 1.0 wt% exfoliated MoS2 fillers, the tensile strength and tensile modulus of EP were even improved ~500% and ~6800%, respectively. Therefore, this work provides a facile way to produce high-performance EP nanocomposites.
  • 加载中
    1. [1]

      Li, A.; Xu, W.; Wang, G.; Wang, X. Novel strategy for molybdenum disulfide nanosheets grown on titanate nanotubes for enhancing the flame retardancy and smoke suppression of epoxy resin. J. Appl. Polym. Sci. 2017, 135, 46064.  doi: 10.1002/app.46064

    2. [2]

      Qiang, H.; Liu, M.; Chen, J.; Wan, Q.; Tian, J.; Long, H.; Jiang, R.; Wen, Y.; Zhang, X.; Wei, Y. Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Appl. Surf. Sci. 2017, 419, 35-44.  doi: 10.1016/j.apsusc.2017.05.006

    3. [3]

      Zhang, H. X.; Ko, E. B.; Park, J. H.; Moon, Y. K.; Park, B. S.; Zhang, X. Q.; Yoon, K. B. Preparation and properties of polyethylene/dodecanethiol-MoS2 nanocomposites with dodecanethiol-MoS2/MgCl2-supported Ziegler-Natta catalyst via an in situ polymerization method. Polymer 2017, 108, 223-229.  doi: 10.1016/j.polymer.2016.11.069

    4. [4]

      Xuan, D.; Zhou, Y.; Nie, W.; Chen, P. Sodium alginate-assisted exfoliation of MoS2 and its reinforcement in polymer nanocomposites. Carbohydr. Polym. 2017, 155, 40-48.  doi: 10.1016/j.carbpol.2016.08.052

    5. [5]

      Sorrentino, A.; Altavilla, C.; Merola, M.; Senatore, A.; Ciambelli, P.; Iannace, S. Nanosheets of MoS2-oleylamine as hybrid filler for self-lubricating polymer composites: Thermal, tribological, and mechanical properties. Polym. Compos. 2015, 36, 1124-1134.  doi: 10.1002/pc.v36.6

    6. [6]

      O’Neill, A.; Khan, U.; Coleman, J. N. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mat. 2012, 24, 2414-2421.  doi: 10.1021/cm301515z

    7. [7]

      Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; Hs, V. D. Z.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Chem. Mat. 2012, 24, 772-775.  doi: 10.1002/adma.201103965

    8. [8]

      Thakur, V. K.; Thakur, M. K. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 2014, 109, 102-117.  doi: 10.1016/j.carbpol.2014.03.039

    9. [9]

      Nichols, M. E.; Gerlock, J. L. Rates of photooxidation induced crosslinking and chain scission in thermoset polymer coatings II. Effect of hindered amine light stabilizer and ultraviolet light absorber additives. Polym. Degrad. Stabil. 2000, 69, 197-207.  doi: 10.1016/S0141-3910(00)00061-6

    10. [10]

      Gorowara, R. L.; Kosik, W. E.; Mcknight, S. H.; Mccullough, R. L. Molecular characterization of glass fiber surface coatings for thermosetting polymer matrix/glass fiber composites. Compos. Pt. A-Appl. Sci. Manuf. 2001, 32, 323-329.  doi: 10.1016/S1359-835X(00)00112-3

    11. [11]

      Brennan, B.; Spencer, S. J.; Belsey, N. A.; Faris, T.; Cronin, H.; Silva, S. R. P.; Sainsbury, T.; Gilmore, I. S.; Stoeva, Z.; Pollard, A. J. Structural, chemical and electrical characterisation of conductive graphene-polymer composite films. Appl. Surf. Sci. 2017, 403, 403-412.  doi: 10.1016/j.apsusc.2017.01.132

    12. [12]

      Dong, H.; Xiaosu, Y. I.; Xuefeng, A. N.; Zhang, C.; Yan, L.; Deng, H. Development of interleaved fibre-reinforced thermoset polymer matrix composites. Acta Materiae Compositae Sinica 2014, 31, 273-285.

    13. [13]

      Wang, J.; Zhang, D.; Zhang, Y.; Cai, W.; Yao, C.; Hu, Y.; Hu, W. Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane. J. Hazard. Mater. 2019, 362, 482-494.  doi: 10.1016/j.jhazmat.2018.09.009

    14. [14]

      Wu, K.; Song, L.; Hu, Y.; Lu, H.; Kandola, B. K.; Kandare, E. Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog. Org. Coat. 2009, 65, 490-497.  doi: 10.1016/j.porgcoat.2009.04.008

    15. [15]

      Ying, L.; Mao, S. Study on the properties and application of epoxy resin/polyurethane semi‐interpenetrating polymer networks. J. Appl. Polym. 1996, 61, 2059-2063.  doi: 10.1002/(ISSN)1097-4628

    16. [16]

      Lakouraj, M. M.; Rahpaima, G.; Zare, E. N. Effect of functionalized magnetite nanoparticles and diaminoxanthone on the curing, thermal degradation kinetic and corrosion property of diglycidyl ether of bisphenol A-based epoxy resin. Chinese J. Polym. Sci. 2014, 32, 1489-1499.  doi: 10.1007/s10118-014-1535-5

    17. [17]

      Yan, H.; Jing, D. Q.; Hou, X. L. Chemical degradation of amine-cured DGEBA epoxy resin in supercritical 1-propanol for recycling carbon fiber from composites. Chinese J. Polym. Sci. 2014, 32, 1550-1563.  doi: 10.1007/s10118-014-1519-5

    18. [18]

      Azeez, A. A.; Rhee, K. Y.; Park, S. J.; Hui, D. Epoxy clay nanocomposites-Processing, properties and applications: A review. Compos. Part B-Eng. 2013, 45, 308-320.  doi: 10.1016/j.compositesb.2012.04.012

    19. [19]

      Jiang, X.; Sun, Y.; Zhang, H.; Hou, L. Preparation and characterization of quaternized poly(vinyl alcohol)/chitosan/MoS2 composite anion exchange membranes with high selectivity. Carbohydr. Polym. 2017, 180, 96-103.  doi: 10.1016/j.carbpol.2017.10.023

    20. [20]

      Feng, X.; Wen, P.; Cheng, Y.; Liu, L.; Tai, Q.; Hu, Y.; Liew, K. M. Defect-free MoS2 nanosheets: Advanced nanofillers for polymer nanocomposites. Compos. Part A-Appl. Sci. Manuf. 2016, 81, 61-68.  doi: 10.1016/j.compositesa.2015.11.002

    21. [21]

      Wang, X.; Xing, W.; Feng, X.; Yu, B.; Song, L.; Guan, H. Y.; Hu, Y. Enhanced mechanical and barrier properties of polyurethane nanocomposite films with randomly distributed molybdenum disulfide nanosheets. Compos. Sci. Technol. 2016, 127, 142-148.  doi: 10.1016/j.compscitech.2016.02.029

    22. [22]

      Matusinovic, Z.; Shukla, R.; Manias, E.; Hogshead, C. G.; Wilkiea, C. A. Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polym. Degrad. Stabil. 2012, 97, 2481-2486.  doi: 10.1016/j.polymdegradstab.2012.07.004

    23. [23]

      Wang, J.; Ma, C.; Mu, X.; Cai, W.; Liu, L.; Zhou, X.; Hu, W.; Hu, Y. Construction of multifunctional MoSe2 hybrid towards the simultaneous improvements in fire safety and mechanical property of polymer. J. Hazard. Mater. 2018, 352, 36-46.  doi: 10.1016/j.jhazmat.2018.03.003

    24. [24]

      Zhou, K.; Liu, J.; Gui, Z.; Hu, Y.; Jiang, S. The influence of melamine phosphate modified MoS2 on the thermal and flammability of poly(butylene succinate) composites: The Influence of Melamine Phosphate Modified MoS2. Polym. Adv. Technol. 2016, 27, 1397-1400.  doi: 10.1002/pat.v27.10

    25. [25]

      Zeng, G.; Liu, M.; Liu, X.; Huang, Q.; Xu, D.; Mao, L.; Huang, H.; Deng, F.; Zhang, X.; Wei, Y. Mussel inspired preparation of MoS2 based polymer nanocomposites: The case of polyPEGMA. Appl. Surf. Sci. 2016, 387, 399-405.  doi: 10.1016/j.apsusc.2016.05.093

    26. [26]

      Zhou, K.; Liu, J.; Shi, Y.; Jiang, S.; Wang, D.; Hu, Y.; Gui, Z. MoS2 nanolayers grown on carbon nanotubes: An advanced reinforcement for epoxy composites. ACS Appl. Mater. Interface 2015, 7, 6070-6081.  doi: 10.1021/acsami.5b00762

    27. [27]

      Eksik, O.; Gao, J.; Shojaee, S. A.; Thomas, A.; Chow, P.; Bartolucci, S. F.; Lucca, D. A.; Koratkar, N. Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives. ACS Nano. 2014, 8, 5282-5289.  doi: 10.1021/nn5014098

    28. [28]

      Chen, B.; Ni, B. J.; Liu, W. T.; Ye, Q. Y.; Liu, S. Y.; Zhang, H. X.; Yoon, K. B. Mechanical properties of epoxy nanocomposites filled with melamine functionalized molybdenum disulfide. RSC Adv. 2018, 8, 20450-20455.  doi: 10.1039/C8RA02689K

    29. [29]

      Divigalpitiya, W. M. R.; Frindt, R. F.; Morrison, S. R. Inclusion systems of organic molecules in restacked single-layer molybdenum disulfide. Science 1989, 246, 369-71.  doi: 10.1126/science.246.4928.369

    30. [30]

      Divigalpitiya, W. M. R.; Morrison, S. R.; Frindt, R. F. Thin oriented films of molybdenum disulphide. Thin Solid Films 1990, 186, 177-192.  doi: 10.1016/0040-6090(90)90511-B

    31. [31]

      Gönen, M.; Egbuchunam, T. O.; Balköse, D.; İnal, F.; Ülkü, S. Preparation and characterization of magnesium stearate, cobalt stearate, and copper stearate and their effects on poly(vinyl chloride) dehydrochlorination. J. Vinyl Addit. Technol. 2014, 47, 131-137.  doi: 10.1002/vnl.21384

    32. [32]

      Guo, Y.; Wang, Z.; Shao, H.; Jiang, X. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 2013, 52, 583-589.  doi: 10.1016/j.carbon.2012.10.028

  • 加载中
    1. [1]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    2. [2]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    3. [3]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    4. [4]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    5. [5]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    6. [6]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    7. [7]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

    8. [8]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    9. [9]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    10. [10]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    11. [11]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    12. [12]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    13. [13]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    14. [14]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    15. [15]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    16. [16]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    17. [17]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

    18. [18]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    19. [19]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    20. [20]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

Metrics
  • PDF Downloads(0)
  • Abstract views(686)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return