Citation: Chen Tan, Wen-Min Pang, Chang-Le Chen. A Phenol-containing α-Diimine Ligand for Nickel- and Palladium-Catalyzed Ethylene Polymerization[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 974-980. doi: 10.1007/s10118-019-2232-1 shu

A Phenol-containing α-Diimine Ligand for Nickel- and Palladium-Catalyzed Ethylene Polymerization

  • Corresponding author: Chang-Le Chen, changle@ustc.edu.cn
  • Received Date: 26 December 2018
    Revised Date: 21 January 2019
    Available Online: 1 March 2019

  • A phenol-containing dibenzhydryl-based α-diimine ligand bearing hydroxy group on para-position of aniline moiety was designed, synthesized, and investigated in Ni- and Pd-catalyzed ethylene polymerization. The Ni complex bearing hydroxy groups resulted in not only high polyethylene molecular weight (Mn up to 1.5 × 106), but also significantly increased melting temperature (Tm up to 123 °C) and greatly decreased branching density (33/1000C) versus the Ni catalyst bearing OMe group on para-position of aniline moiety. This is consistent with the hypothesis that the deprotonation of the phenol moiety generated a phenoxide bearing strong electron-donating O substituent by methylaluminoxane (MAO) cocatalyst. The Pd complexes bearing hydroxy groups exhibited similar catalytic properties to those of the Pd catalyst bearing OMe groups did.
  • 加载中
    1. [1]

      Huynh, H. V. Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem. Rev. 2018, 118, 9457-9492.  doi: 10.1021/acs.chemrev.8b00067

    2. [2]

      Li, Y.; Zhang, Y. Y.; Hu, L. F.; Zhang, X. H.; Du, B. Y.; Xu, J. T. Carbon dioxide-based copolymers with various architectures. Prog. Polym. Sci. 2018, 82, 120-157.  doi: 10.1016/j.progpolymsci.2018.02.001

    3. [3]

      Van Zee, N. J.; Sanford, M. J.; Coates, G. W. Electronic effects of aluminum complexes in the copolymerization of propylene oxide with tricyclic anhydrides: Access to well-defined, functionalizable aliphatic polyesters. J. Am. Chem. Soc. 2016, 138, 2755-2761.  doi: 10.1021/jacs.5b12888

    4. [4]

      Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P. O.; Wu, Y. D.; Sigman, M. S.; Wiest, O. Mechanism, reactivity, and selectivity in palladium-catalyzed redox-relay Heck arylations of alkenyl alcohols. J. Am. Chem. Soc. 2014, 136, 1960-1967.  doi: 10.1021/ja4109616

    5. [5]

      Cusso, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Asymmetric epoxidation with H2O2 by manipulating the electronic properties of non-heme iron catalysts. J. Am. Chem. Soc. 2013, 135, 14871-14878.  doi: 10.1021/ja4078446

    6. [6]

      Chen, M. S.; White, M. C. A predictably selective aliphatic C―H oxidation reaction for complex molecule synthesis. Science 2007, 318, 783-787.  doi: 10.1126/science.1148597

    7. [7]

      Wang, F. Z.; Tian, S. S.; Lia, R. P.; Li, W. M.; Chen, C. L. Ligand steric effects on naphthyl-α-diimine nickel catalyzed α-olefin polymerization. Chinese J. Polym. Sci. 2018, 36, 157-162.  doi: 10.1007/s10118-018-2038-6

    8. [8]

      Kaiser, J. M.; Long, B. K. Recent developments in redox-active olefin polymerization catalysts. Coord. Chem. Rev. 2018, 372, 141-152.  doi: 10.1016/j.ccr.2018.06.007

    9. [9]

      Ito, S. Palladium-catalyzed homo- and copolymerization of polar monomers: Synthesis of aliphatic and aromatic polymers. Bull. Chem. Soc. Jpn. 2018, 91, 251-261.  doi: 10.1246/bcsj.20170347

    10. [10]

      Si, G. F.; Na, Y. N.; Chen, C. L. Ethylene (co)oligomerization by phosphine‐pyridine based palladium and nickel catalysts. ChemCatChem 2018, 10, 5135–5140.  doi: 10.1002/cctc.201800957

    11. [11]

      Fu, X.; Zhang, L.; Tanaka, R.; Shiono, T.; Cai, Z. Highly robust nickel catalysts containing anilinonaphthoquinone ligand for copolymerization of ethylene and polar monomers. Macromolecules 2017, 50, 9216-9221.  doi: 10.1021/acs.macromol.7b01947

    12. [12]

      Jian, Z. B. Synthesis of functionalized polyolefins: Design from catalysts to polar monomers. Acta Polymerica Sinica (in Chinese) 2018, 1359-1371.

    13. [13]

      Ma, Z.; Yang, W.; Sun, W. H. Recent progress on transition metal (Fe, Co, Ni, Ti and V) complex catalysts in olefin polymerization with high thermal stability. Chinese J. Chem. 2017, 35, 531-540.  doi: 10.1002/cjoc.v35.5

    14. [14]

      Song, X. Y.; Ma, Q.; Yuan, H. B.; Cai, Z. G. Synthesis of hydroxy-functionalized ultrahigh molecular weight polyethylene using fluorenylamidotitanium complex. Chinese J. Polym. Sci. 2018, 36, 171-175.  doi: 10.1007/s10118-018-2046-6

    15. [15]

      Zhang, D.; Chen, C. L. Influence of polyethylene glycol unit on palladium and nickel catalyzed ethylene polymerization and copolymerization. Angew. Chem. Int. Ed. 2017, 56, 14672–14676.  doi: 10.1002/anie.201708212

    16. [16]

      Chen, M.; Chen, C. L. Polar functionalized polyolefins: New catalysts, new modulation strategies and new materials. Acta Polymerica Sinica (in Chinese) 2018, 1372-1384.

    17. [17]

      Guo, L. H.; Liu, W.; Chen, C. L. Late transition metal catalyzed α-olefin polymerization and copolymerization with polar monomers. Mater. Chem. Front. 2017, 1, 2487-2494.  doi: 10.1039/C7QM00321H

    18. [18]

      Chen, C. L. Designing transition metal catalysts for olefin polymerization and copolymerization: Beyond electronic and steric tuning. Nat. Rev. Chem. 2018, 2, 6-14.  doi: 10.1038/s41570-018-0003-0

    19. [19]

      Zhao, M. H.; Chen, C. L. Accessing multiple catalytically active states in redox controlled olefin polymerization. ACS Catal. 2017, 7, 7490-7494.  doi: 10.1021/acscatal.7b02564

    20. [20]

      Guo, L. H.; Dai, S. Y.; Sui, X. L.; Chen, C. L. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal. 2016, 6, 428-441.  doi: 10.1021/acscatal.5b02426

    21. [21]

      Chen, C. L. Redox controlled polymerization and copolymerization. ACS Catal. 2018, 8, 5506–5514.  doi: 10.1021/acscatal.8b01096

    22. [22]

      Zuideveld, M. A.; Wehrmann, P.; Röhr, C.; Mecking, S. Remote substituents controlling catalytic polymerization by very active and robust neutral nickel(II) complexes. Angew. Chem. Int. Ed. 2004, 43, 869-873.  doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Gao, H. Y.; Ke, Z. F.; Pei, L. X.; Song, K. M.; Wu, Q. Drastic ligand electronic effect on anilido-imino nickel catalysts toward ethylene polymerization. Polymer 2007, 48, 7249-7254.  doi: 10.1016/j.polymer.2007.10.022

    24. [24]

      Wucher, P.; Goldbach, V.; Mecking, S. Electronic influences in phosphinesulfonato palladium(II) polymerization catalysts. Organometallics 2013, 32, 4516-4522.  doi: 10.1021/om400297x

    25. [25]

      Chen, M.; Chen, C. L. Rational design of high-performance phosphine sulfonate nickel catalysts for ethylene polymerization and copolymerization with polar monomers. ACS Catal. 2017, 7, 1308-1312.  doi: 10.1021/acscatal.6b03394

    26. [26]

      Liang, T.; Chen, C. L. Position makes the difference: Electronic effects in nickel-catalyzed ethylene polymerizations and copolymerizations. Inorg. Chem. 2018, 57, 14913-14919.  doi: 10.1021/acs.inorgchem.8b02687

    27. [27]

      Gao, J. X.; Yang, B. P.; Chen, C. L. Sterics versus electronics: Imine/phosphine-oxide-based nickel catalysts for ethylene polymerization and copolymerization. J. Catal. 2019, 369, 233-238.  doi: 10.1016/j.jcat.2018.11.007

    28. [28]

      Popeney, C. S.; Levins, C. M.; Guan, Z. Systematic investigation of ligand substitution effects in cyclophane-based nickel(II) and palladium(II) olefin polymerization catalysts. Organometallics 2011, 30, 2432-2452.  doi: 10.1021/om200193r

    29. [29]

      Popeney, C.; Guan Z. Ligand electronic effects on late transition metal polymerization catalysts. Organometallics 2005, 24, 1145-1155.  doi: 10.1021/om048988j

    30. [30]

      Popeney, C. S.; Guan Z. Effect of ligand electronics on the stability and chain transfer rates of substituted Pd(II) α-diimine catalysts. Macromolecules 2010, 43, 4091-4097.  doi: 10.1021/ma100220n

    31. [31]

      Dai, S. Y.; Sui, X. L.; Chen, C. L. Highly robust palladium(II) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed. 2015, 54, 9948-9953.  doi: 10.1002/anie.201503708

    32. [32]

      Guo, L. H.; Dai, S. Y.; Chen, C. L. Investigations of the ligand electronic effects on α-diimine nickel(II) catalyzed ethylene polymerization. Polymers 2016, 8, 37-46.  doi: 10.3390/polym8020037

    33. [33]

      Dai, S. Y.; Chen, C. L. Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers. Angew. Chem. Int. Ed. 2016, 55, 13281-13285.  doi: 10.1002/anie.201607152

    34. [34]

      Dai, S. Y.; Chen, C. L. Palladium-catalyzed direct synthesis of various branched, carboxylic acid-functionalized polyolefins: Characterization, derivatization, and properties. Macromolecules 2018, 51, 6818-6824.  doi: 10.1021/acs.macromol.8b01261

    35. [35]

      Na, Y. N.; Dai, S. Y.; Chen, C. L. Direct synthesis of polar-functionalized linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE). Macromolecules 2018, 51, 4040-4048.  doi: 10.1021/acs.macromol.8b00467

    36. [36]

      Zou, C.; Dai, S. Y.; Chen, C. L. Ethylene polymerization and copolymerization using nickel 2-iminopyridine-N-oxide catalysts: Modulation of polymer molecular weights and molecular-weight distributions. Macromolecules 2018, 51, 49-56.  doi: 10.1021/acs.macromol.7b02156

    37. [37]

      Fang, J.; Sui, X. L.; Li, Y. G.; Chen, C. L. Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization. Polym. Chem. 2018, 9, 4143-4149.  doi: 10.1039/C8PY00725J

    38. [38]

      Zhou, S. X.; Chen, C. L. Synthesis of silicon-functionalized polyolefins by subsequent cobalt-catalyzed dehydrogenative silylation and nickel-catalyzed copolymerization. Sci. Bull. 2018, 63, 441-445.  doi: 10.1016/j.scib.2018.02.021

    39. [39]

      Lian, K.; Zhu, Y.; Li, W.; Dai, S. Y.; Chen, C. L. Direct synthesis of thermoplastic polyolefin elastomers from nickel-catalyzed ethylene polymerization. Macromolecules 2017, 50, 6074-6080.  doi: 10.1021/acs.macromol.7b01087

    40. [40]

      Sui, X. L.; Hong, C. W.; Pang, W. M.; Chen, C. L. Unsymmetrical α-diimine palladium catalysts and their properties in olefin (co) polymerization. Mater. Chem. Front. 2017, 1, 967-972.  doi: 10.1039/C6QM00235H

    41. [41]

      Hansch, C.; Leo, A.; Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165-195.  doi: 10.1021/cr00002a004

    42. [42]

      Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 2009, 48, 3244-3266.  doi: 10.1002/anie.v48:18

    43. [43]

      Tian, Y.; Chen, C. Y.; Yang, C. C.; Young, A. C.; Jang, S. H.; Chen, W. C.; Alex, K. Y. J. 2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions. Chem. Mater. 2008, 20, 1977-1987.  doi: 10.1021/cm702527m

    44. [44]

      Yang, P.; Zhao, J.; Wu, W.; Yu, X.; Liu, Y. Accessing the long-lived triplet excited states in bodipy-conjugated 2-(2-hydroxyphenyl) benzothiazole/benzoxazoles and applications as organic triplet photosensitizers for photooxidations. J. Org. Chem. 2012, 77, 6166-6178.  doi: 10.1021/jo300943t

    45. [45]

      Khan, S. A.; Azam, S. First principle investigation of electronic structure, chemical bonding and optical properties of tetrabarium gallium trinitride oxide single crystal. Mater. Res. Bull. 2015, 70, 436-441.  doi: 10.1016/j.materresbull.2015.04.064

    46. [46]

      Takagi, S.; Orimo, S. Recent progress in hydrogen-rich materials from the perspective of bonding flexibility of hydrogen. Scripta Mater. 2015, 109, 1-5.  doi: 10.1016/j.scriptamat.2015.07.024

    47. [47]

      Pauling, L. in The nature of the chemical bond, Cornell University Press, Ithaca, NY, 1967.

    48. [48]

      Riilke, R. E.; Ernsting, J. M.; Spelt, A. L.; Elsevier, C. J.; van Leeuwelqs, R. W. N. M.; Vrieze, K. NMR study on the coordination behavior of dissymmetric terdentate trinitrogen ligands on methylpalladium(II) compounds. Inorg. Chem. 1993, 32, 5769-5778.  doi: 10.1021/ic00077a020

    49. [49]

      Gomes, C. S. B.; Costa, S. I.; Silva, L. C.; Jimenez-Tenorio, M.; Valerga, P.; Puerta, M. C.; Gomes, P. T. Cationic R-substituted-indenyl nickel(II) complexes of arsine and stibine ligands: Synthesis, characterization, and catalytic behavior in the oligomerization of styrene. Eur. J. Inorg. Chem. 2018, 597-607.

    50. [50]

      Kaliner, M.; Strassner, T. Tunable aryl alkyl ionic liquids with weakly coordinating bulky borate anion. Tetrahedron Lett. 2016, 57, 3453-3456.  doi: 10.1016/j.tetlet.2016.06.082

    51. [51]

      Pei, L.; Liu, F.; Liao, H.; Gao, J.; Zhong, L.; Gao, H.; Wu, Q. Synthesis of polyethylenes with controlled branching with α-diimine nickel catalysts and revisiting formation of long-chain branching. ACS Catal. 2018, 8, 1104-1113.  doi: 10.1021/acscatal.7b03282

    52. [52]

      Zhong, S.; Tan, Y.; Zhong, L.; Gao, J.; Liao, H.; Jiang, L.; Gao, H.; Wu, Q. Precision synthesis of ethylene and polar monomer copolymers by palladium-catalyzed living coordination copolymerization. Macromolecules 2017, 50, 5661-5669.  doi: 10.1021/acs.macromol.7b01132

    53. [53]

      Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-diimine-nickel-catalyzed (co) polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules 2017, 50, 2675-2682.  doi: 10.1021/acs.macromol.7b00121

    54. [54]

      Liao, H.; Zhong, L.; Xiao, Z.; Zheng, T.; Gao, H.; Wu, Q. α-Diamine nickel catalysts with nonplanar chelate rings for ethylene polymerization. Chem. Eur. J. 2016, 22, 14048-14055.  doi: 10.1002/chem.201602467

    55. [55]

      Hu, H.; Gao, H.; Chen, D.; Li, G.; Tan, Y.; Liang, G.; Zhu, F.; Wu, Q. Ligand-directed regioselectivity in amine–imine nickel-catalyzed 1-hexene polymerization. ACS Catal. 2015, 5, 122-128.  doi: 10.1021/cs501081a

    56. [56]

      Hu, H.; Zhang, L.; Gao, H.; Zhu, F.; Wu, Q. Design of thermally stable amine-imine nickel catalyst precursors for living polymerization of ethylene: Effect of ligand substituents on catalytic behavior and polymer properties. Chem. Eur. J. 2014, 20, 3225-3233.  doi: 10.1002/chem.201303813

    57. [57]

      Liu, J.; Chen, D.; Wu, H.; Xiao, Z.; Gao, H.; Zhu, F.; Wu, Q. Polymerization of α-olefins using a camphyl α-diimine nickel catalyst at elevated temperature. Macromolecules 2014, 47, 3325-3331.  doi: 10.1021/ma5004634

    58. [58]

      Zai, S.; Gao, H.; Huang, Z.; Hu, H.; Wu, H.; Wu, Q. Substituent effects of pyridine-amine nickel catalyst precursors on ethylene polymerization. ACS Catal. 2012, 2, 433-440.  doi: 10.1021/cs200593c

    59. [59]

      Gao, H.; Liu, X.; Tang, Y.; Pan, J.; Wu, Q. Living/controlled polymerization of 4-methyl-1-pentene with α-diimine nickel-diethylaluminium chloride: Effect of alkylaluminium cocatalysts. Polym. Chem. 2011, 2, 1398-1403.  doi: 10.1039/c1py00052g

    60. [60]

      Liu, F. S.; Hu, H. B.; Xu, Y.; Guo, L. H.; Zai, S. B.; Song, K. M.; Gao, H. Y.; Zhang, L.; Zhu, F. M.; Wu, Q. Thermostable α-diimine nickel(II) catalyst for ethylene polymerization: Effects of the substituted backbone structure on catalytic properties and branching structure of polyethylene. Macromolecules 2009, 42, 7789-7796.  doi: 10.1021/ma9013466

    61. [61]

      CCDC 1887662 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    3. [3]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    4. [4]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    5. [5]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    6. [6]

      Shaobin HeXiaoyun GuoQionghua ZhengHuanran ShenYuan XuFenglin LinJincheng ChenHaohua DengYiming ZengWei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096

    7. [7]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    8. [8]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    9. [9]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    10. [10]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    11. [11]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    12. [12]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    13. [13]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    14. [14]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    15. [15]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    16. [16]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    17. [17]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    18. [18]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    19. [19]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    20. [20]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

Metrics
  • PDF Downloads(0)
  • Abstract views(772)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return