Citation: Yuzhang Huang, Ping Chen, Bo Wei, Rongrong Hu, Ben Zhong Tang. Aggregation-induced Emission-active Hyperbranched Poly(tetrahydro-pyrimidine)s Synthesized from Multicomponent Tandem Polymerization[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 428-436. doi: 10.1007/s10118-019-2230-3 shu

Aggregation-induced Emission-active Hyperbranched Poly(tetrahydro-pyrimidine)s Synthesized from Multicomponent Tandem Polymerization

  • Corresponding author: Rongrong Hu, msrrhu@scut.edu.cn Ben Zhong Tang, tangbenz@ust.hk
  • Received Date: 1 January 2019
    Revised Date: 19 January 2019
    Accepted Date: 1 January 2018
    Available Online: 15 February 2019

  • Hyperbranched polymer with highly branched three-dimensional topological structure, a large number of end groups, and multifaceted functionalities have gained much attention, while polymers with aggregation-induced emission (AIE) properties become a group of popular luminescent materials recently. The design and synthesis of AIE-active hyperbranched polymers, which combine the advantages of these two types of materials, are attractive but challenging. In this work, four hyperbranched poly(tetrahydropyrimidine)s were synthesized from the metal-free room temperature multicomponent tandem polymerization of diester group-activated internal alkyne, polyfunctional aromatic amines, and formaldehyde in methanol under the catalysis of acetic acid. Through different monomer combination and controlling the monomer loading order, hyperbranched polymers with various topological structures as well as sequences of different functional groups in the polymer backbone were obtained with high molecular weights (up to 3.0 × 104 g/mol) in high yields (up to 98%). The hyperbranched poly(tetrahydropyrimidine) emitted faintly in solution, while its luminescence was notably enhanced in the aggregated state, suggesting its typical aggregation-induced emission property. It is anticipated that the multicomponent polymerization may provide a synthetic platform for the construction of hyperbranched polyheterocycles with diverse structures and functionalities.
  • 加载中
    1. [1]

      Fréchet, J. M. J.; Hawker, C. J.; Gitsov, I.; Leon, J. W. Dendrimers and hyperbranched polymers: Two families of three-dimensional macromolecules with similar but clearly distinct properties. J. Macromol. Sci. Part A 1996, 33, 1399-1425.  doi: 10.1080/10601329608014916

    2. [2]

      Zhang, J.; Yong, H.; A, S.; Xu, Q.; Miao, Y.; Lyu, J.; Gao, Y.; Zeng, M.; Zhou, D.; Yu, Z.; Tai, H.; Wang, W. Structural design of robust and biocompatible photonic hydrogels from an in situ cross-linked hyperbranched polymer system. Chem. Mater. 2018, 30, 6091-6098.  doi: 10.1021/acs.chemmater.8b02542

    3. [3]

      Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997-4022.  doi: 10.1039/C4CS00224E

    4. [4]

      Mu, B.; Liu, T.; Tian, W. Long-chain hyperbranched polymers: Synthesis, properties, and applications. Macromol. Rapid Commun. 2018, 1800471-1800471.  doi: 10.1002/marc.201800471

    5. [5]

      Pedron, S.; Pritchard, A. M.; Vincil, G. A.; Andrade, B.; Zimmerman, S. C.; Harley, B. A. C. Patterning three-dimensional hydrogel microenvironments using hyperbranched polyglycerols for independent control of mesh size and stiffness. Biomacromolecules 2017, 18, 1393-1400.  doi: 10.1021/acs.biomac.7b00118

    6. [6]

      Li, X.; Liu, X.; Shi, D.; Wei, W.; Chen, M.; Liu, X. Facile synthesis of hyperbranched polymers by sequential polycondensation. ACS Macro Lett. 2018, 7, 778-782.  doi: 10.1021/acsmacrolett.8b00443

    7. [7]

      Fletcher, N. L.; Houston, Z. H.; Simpson, J. D.; Veedu, R. N.; Thurecht, K. J. Designed multifunctional polymeric nanomedicines: long-term biodistribution and tumour accumulation of aptamer-targeted nanomaterials. Chem. Commun. 2018, 54, 11538-11541.  doi: 10.1039/C8CC05831H

    8. [8]

      Xu, Q.; A, S.; McMichael, P.; Creagh-Flynn, J.; Zhou, D.; Gao, Y.; Li, X.; Wang, X.; Wang, W. Double-cross-linked hydrogel strengthened by UV irradiation from a hyperbranched peg-based trifunctional polymer. ACS Macro Lett. 2018, 7, 509-513.  doi: 10.1021/acsmacrolett.8b00138

    9. [9]

      Wang, D.; Zhao, T.; Zhu, X.; Yan, D.; Wang, W. Bioapplications of hyperbranched polymers. Chem. Soc. Rev. 2015, 44, 4023-4071.  doi: 10.1039/C4CS00229F

    10. [10]

      Granskog, V.; Andrén, O. C. J.; Cai, Y.; González-Granillo, M.; Felländer-Tsai, L.; von Holst, H.; Haldosen, L.-A.; Malkoch, M. Linear dendritic block copolymers as promising biomaterials for the manufacturing of soft tissue adhesive patches using visible light initiated thiol-ene coupling chemistry. Adv. Funct. Mater. 2015, 25, 6596-6605.  doi: 10.1002/adfm.201503235

    11. [11]

      Fang, R.; Liu, Y.; Wang, Z.; Zhang, X. Water-soluble supramolecular hyperbranched polymers based on host-enhanced π-π interaction. Polym. Chem. 2013, 4, 900-903.  doi: 10.1039/c2py21037a

    12. [12]

      Fang, W.; Zhang, R.; Yao, Y.; Liu, H.; Chen, Y. Specific thermoresponsive behaviours exhibited by optically active and inactive phenylalanine modified hyperbranched polyethylenimines in water. Chinese J. Polym. Sci. 2017, 35, 1035-1042.  doi: 10.1007/s10118-017-1950-5

    13. [13]

      Yates, C. R.; Hayes, W. Synthesis and applications of hyperbranched polymers. Eur. Polym. J. 2004, 40, 1257-1281.  doi: 10.1016/j.eurpolymj.2004.02.007

    14. [14]

      Sato, M.; Matsuoka, Y.; Yamaguchi, I. Preparation and properties of novel thermotropic liquid crystalline hyperbranched polyesters composed of five-membered heterocyclic mesogen by A2 + B3 approach. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2998-3008.  doi: 10.1002/(ISSN)1099-0518

    15. [15]

      Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F. R.; Frey, H. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chem. Rev. 2016, 116, 2170-2243.  doi: 10.1021/acs.chemrev.5b00441

    16. [16]

      Tochwin, A.; El-Betany, A.; Tai, H.; Chan, K.; Blackburn, C.; Wang, W. Thermoresponsive and reducible hyperbranched polymers synthesized by RAFT polymerization. Polymers 2017, 9, 443.  doi: 10.3390/polym9090443

    17. [17]

      McMahon, S.; Kennedy, R.; Duffy, P.; Vasquez, J. M.; Wall, J. G.; Tai, H.; Wang, W. Poly(ethylene glycol)-based hyperbranched polymer from RAFT and its application as a silver-sulfadiazine-loaded antibacterial hydrogel in wound care. ACS Appl. Mater. Interfaces 2016, 8, 26648-26656.  doi: 10.1021/acsami.6b11371

    18. [18]

      Zhao, B.; Zheng, Y.; Weng, Z.; Cai, S.; Gao, C. The electrophilic effect of thiol groups on thiol-yne thermal click polymerization for hyperbranched polythioether. Polym. Chem. 2015, 6, 3747-3753.  doi: 10.1039/C5PY00307E

    19. [19]

      Han, J.; Zhao, B.; Tang, A.; Gao, Y.; Gao, C. Fast and scalable production of hyperbranched polythioether-ynes by a combination of thiol-halogen click-like coupling and thiol-yne click polymerization. Polym. Chem. 2012, 3, 1918-1925.  doi: 10.1039/C1PY00367D

    20. [20]

      Chen, X.; Peng, L.; Feng, M.; Xiang, Y.; Tong, A.; He, L.; Liu, B.; Tang, Y. An aggregation induced emission enhancement-based ratiometric fluorescent sensor for detecting trace uranyl ion (UO22+) and the application in living cells imaging. J. Lumin. 2017, 186, 301-306.  doi: 10.1016/j.jlumin.2017.02.019

    21. [21]

      Yoshihara, D.; Noguchi, T.; Roy, B.; Sakamoto, J.; Yamamoto, T.; Shinkai, S. Design of a hypersensitive ph-sensory system created by a combination of charge neutralization and aggregation-induced emission (AIE). Chem. Eur. J. 2017, 23, 17663-17666.  doi: 10.1002/chem.v23.70

    22. [22]

      Wu, J.-L.; Zhang, C.; Qin, W.; Quan, D. P.; Ge, M. L.; Liang, G. D. Thermoresponsive fluorescent semicrystalline polymers decorated with aggregation induced emission luminogens. Chinese J. Polym. Sci. 2018. DOI: 10.1007/s10118-019-2201-8.  doi: 10.1007/s10118-019-2201-8

    23. [23]

      Yu, L.; Wu, Z.; Xie, G.; Zeng, W.; Ma, D.; Yang, C. Molecular design to regulate the photophysical properties of multifunctional TADF emitters towards high-performance TADF-based OLEDs with EQEs up to 22.4% and small efficiency roll-offs. Chem. Sci. 2018, 9, 1385-1391.  doi: 10.1039/C7SC04669C

    24. [24]

      Shi, H.; Yang, J.; Dong, X.; Wu, X.; Zhou, P.; Cheng, F.; Choi, M. M. F. A Novel tetraphenylethene-carbazole type compound containing the dimesitylboron moiety: Aggregation-induced emission enhancement and electroluminescence properties. RSC Adv 2014, 4, 19418-19421.  doi: 10.1039/C4RA01925C

    25. [25]

      Li, Y.; Ma, Z.; Li, A.; Xu, W.; Wang, Y.; Jiang, H.; Wang, K.; Zhao, Y.; Jia, X. A single crystal with multiple functions of optical waveguide, aggregation-induced emission, and mechanochromism. ACS Appl. Mater. Interfaces 2017, 9, 8910-8918.  doi: 10.1021/acsami.7b00195

    26. [26]

      Zong, L.; Zhang, H.; Li, Y.; Gong, Y.; Li, D.; Wang, J.; Wang, Z.; Xie, Y.; Han, M.; Peng, Q.; Li, X.; Dong, J.; Qian, J.; Li, Q.; Li, Z. Tunable aggregation-induced emission nanoparticles by varying isolation groups in perylene diimide derivatives and application in three-photon fluorescence bioimaging. ACS Nano 2018, 12, 9532-9540.  doi: 10.1021/acsnano.8b05090

    27. [27]

      Qi, J.; Sun, C.; Li, D.; Zhang, H.; Yu, W.; Zebibula, A.; Lam, J. W. Y.; Xi, W.; Zhu, L.; Cai, F.; Wei, P.; Zhu, C.; Kwok, R. T. K.; Streich, L. L.; Prevedel, R.; Qian, J.; Tang, B. Z. Aggregation-induced emission luminogen with near-infrared-II excitation and near-infrared-I emission for ultradeep intravital two-photon microscopy. ACS Nano 2018, 12, 7936-7945.  doi: 10.1021/acsnano.8b02452

    28. [28]

      Zou, J.; Lu, H.; Zhao, X.; Li, W.; Guan, Y.; Zheng, Y.; Zhang, L.; Gao, H. A multi-functional fluorescent probe with aggregation-induced emission characteristics: Mitochondrial imaging, photodynamic therapy and visualizing therapeutic process in zebrafish model. Dyes Pigments 2018, 151, 45-53.  doi: 10.1016/j.dyepig.2017.12.044

    29. [29]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.  doi: 10.1039/c1cs15113d

    30. [30]

      Hu, R.; Lam, J. W. Y.; Li, M.; Deng, H.; Li, J.; Tang, B. Z. Homopolycyclotrimerization of A4-type tetrayne: A new approach for the creation of a soluble hyperbranched poly(tetraphenylethene) with multifunctionalities. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4752-4764.  doi: 10.1002/pola.v51.22

    31. [31]

      Hu, R.; Lam, J. W. Y.; Liu, J.; Sung, H. H. Y.; Williams, I. D.; Yue, Z.; Wong, K. S.; Yuen, M. M. F.; Tang, B. Z. Hyperbranched conjugated poly(tetraphenylethene): Synthesis, aggregation-induced emission, fluorescent photopatterning, optical limiting and explosive detection. Polym. Chem. 2012, 3, 1481-1489.  doi: 10.1039/c2py20057k

    32. [32]

      Zhang, J.; Shi, W.; Liu, Q.; Chen, T.; Zhou, X.; Yang, C.; Zhang, K.; Xie, Z. Atom-economical, room-temperature, and high-efficiency synthesis of polyamides via a three-component polymerization involving benzoxazines, odorless isocyanides, and water. Polym. Chem. 2018, 9, 5566-5571.  doi: 10.1039/C8PY01256C

    33. [33]

      Zhang, J.; Wu, Y.-H.; Wang, J. C.; Du, F.-S.; Li, Z. C. Functional Poly(ester-amide)s with tertiary ester linkages via the Passerini multicomponent polymerization of a dicarboxylic acid and a diisocyanide with different electron-deficient ketones. Macromolecules 2018, 51, 5842-5851.  doi: 10.1021/acs.macromol.8b01168

    34. [34]

      Tian, T.; Hu, R.; Tang, B. Z. Room temperature one-step conversion from elemental sulfur to functional polythioureas through catalyst-free multicomponent polymerizations. J. Am. Chem. Soc. 2018, 140, 6156-6163.  doi: 10.1021/jacs.8b02886

    35. [35]

      Xue, H.; Zhao, Y.; Wu, H.; Wang, Z.; Yang, B.; Wei, Y.; Wang, Z.; Tao, L. Multicomponent combinatorial polymerization via the Biginelli reaction. J. Am. Chem. Soc. 2016, 138, 8690-8693.  doi: 10.1021/jacs.6b04425

    36. [36]

      Tang, X.; Zheng, C.; Chen, Y.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Multicomponent tandem polymerizations of aromatic diynes, terephthaloyl chloride, and hydrazines toward functional conjugated polypyrazoles. Macromolecules 2016, 49, 9291-9300.  doi: 10.1021/acs.macromol.6b02192

    37. [37]

      Jiang, R.; Liu, M.; Huang, H.; Huang, L.; Huang, Q.; Wen, Y.; Cao, Q.; Tian, J.; Zhang, X.; Wei, Y. Microwave-assisted multicomponent tandem polymerization for rapid preparation of biodegradable fluorescent organic nanoparticles with aggregation-induced emission feature and their biological imaging applications. Dyes Pigments 2018, 149, 581-587.  doi: 10.1016/j.dyepig.2017.11.025

    38. [38]

      Long, Z.; Mao, L.; Liu, M.; Wan, Q.; Wan, Y.; Zhang, X.; Wei, Y. Marrying multicomponent reactions and aggregation-induced emission (AIE): New directions for fluorescent nanoprobes. Polym. Chem. 2017, 8, 5644-5654.  doi: 10.1039/C7PY00979H

    39. [39]

      Deng, H.; Hu, R.; Zhao, E.; Chan, C. Y. K.; Lam, J. W. Y.; Tang, B. Z. One-pot three-component tandem polymerization toward functional poly(arylene thiophenylene) with aggregation-enhanced emission characteristics. Macromolecules 2014, 47, 4920-4929.  doi: 10.1021/ma501190g

    40. [40]

      Zheng, C.; Deng, H.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Multicomponent tandem reactions and polymerizations of alkynes, carbonyl chlorides, and thiols. Macromolecules 2015, 48, 1941-1951.  doi: 10.1021/acs.macromol.5b00175

    41. [41]

      Wei, B.; Li, W.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Metal-free multicomponent tandem polymerizations of alkynes, amines, and formaldehyde toward structure- and sequence-controlled luminescent polyheterocycles. J. Am. Chem. Soc. 2017, 139, 5075-5084.  doi: 10.1021/jacs.6b12767

    42. [42]

      Zhao, E.; Lam, J. W. Y.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Huang, X.; Hao, J.; Tang, B. Z. Poly[(maleic anhydride)-alt-(vinyl acetate)]: A pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules 2015, 48, 64-71.  doi: 10.1021/ma502160w

  • 加载中
    1. [1]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    2. [2]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    3. [3]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    4. [4]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    5. [5]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    6. [6]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    7. [7]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    10. [10]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    11. [11]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    12. [12]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    13. [13]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    14. [14]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    15. [15]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    16. [16]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    17. [17]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    18. [18]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    19. [19]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    20. [20]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

Metrics
  • PDF Downloads(0)
  • Abstract views(762)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return