Citation: Hao Wang, Ri-Guo Wang, Yun-Sheng Ma, Bo Luan, Ai-Hua He. The Influence of Trans-1,4-poly(butadiene-co-isoprene) Copolymer Rubbers (TBIR) with Different Molecular Weights on the NR/TBIR Blends[J]. Chinese Journal of Polymer Science, ;2019, 37(10): 966-973. doi: 10.1007/s10118-019-2229-9 shu

The Influence of Trans-1,4-poly(butadiene-co-isoprene) Copolymer Rubbers (TBIR) with Different Molecular Weights on the NR/TBIR Blends

  • The molecular weight of a polymer is of prime importance and greatly influences the processing and mechanical properties of the polymer. Trans-1,4-poly(butadiene-co-isoprene) multi-block copolymer rubbers (TBIR) exhibit outstanding fatigue resistance, low heat build-up and good abrasion resistance, and are expected to be desirable candidate for high performance tire. Study on the influence of TBIR with different molecular weights on the structure and properties of TBIR and natural rubber (NR)/TBIR blends is essential to understand its contribution to the greatly improved dynamic properties of the rubber vulcanizates. TBIR with different molecular weights characterized by 1H-NMR, 13C-NMR, GPC, and DSC were highly trans-1,4-copolymers with similar chain sequence distribution and crystalline trans-1,4-polyisoprene (TPI) blocks. The green strength and modulus of TBIR increased with the increasing molecular weight. The NR/TBIR compounds filled with 40 phr carbon black were chemically cured by sulfur for the preparation of NR/TBIR vulcanizates. The compatibility between NR and TBIR, filler distribution, crosslinking bond and density, and properties of NR/TBIR vulcanizates were studied. The NR/TBIR vulcanizates showed increasing tensile strength, hardness, modulus, rebound, abrasion resistance, and flexural fatigue properties with increasing molecular weight of TBIR. Furthermore, they presented significant improvement in flexural fatigue resistance when compared with that of NR vulcanizate. The contribution mechanism of TBIR on the NR/TBIR blends was discussed. The TBIR with a wide range of molecular weight are ideal rubbers for high performance tires.
  • 加载中
    1. [1]

      Castellano, M.; Conzatti, L.; Costa, G.; Falqui, L.; Turturro, A.; Valenti, B.; Negroni, F. Surface modification of silica: 1. Thermodynamic aspects and effect on elastomer reinforcement. Polymer 2005, 46(3), 695-703.  doi: 10.1016/j.polymer.2004.11.010

    2. [2]

      Prasertsri, S.; Rattanasom, N. Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: Mechanical and dynamic properties. Polym. Test. 2012, 31(5), 593-605.  doi: 10.1016/j.polymertesting.2012.03.003

    3. [3]

      Wang, Y. X.; Ma, J. H.; Zhang, L. Q.; Wu, Y. O. Revisiting the correlations between wet skid resistance and viscoelasticity of rubber composites via comparing carbon black and silica fillers. Polym. Test. 2011, 30(5), 557-562.  doi: 10.1016/j.polymertesting.2011.04.009

    4. [4]

      Ismail, H.; Suzaimah, S. Styrene butadiene rubber/epoxidized natural rubber blends: dynamic properties, curing characteristics and swelling studies. Polym. Test. 2000, 19(8), 879-888.  doi: 10.1016/S0142-9418(99)00058-6

    5. [5]

      Mathew, N. M.; De, S. K. Scanning electron microscopy studies in abrasion of NR/BR blends under different test conditions. J. Mater. Sci. 1983, 18(2), 515-524.  doi: 10.1007/BF00560641

    6. [6]

      Wu, W. L.; Chen, D. J. Silica-modified SBR/BR blends. J. Appl. Polym. Sci. 2015, 120(6), 3695-3700.

    7. [7]

      Wang, Y. X.; Wu, Y. P.; Li, W. J.; Zhang, L. Q. Influence of filler type on wet skid resistance of SSBR/BR composites: Effects from roughness and micro-hardness of rubber surface. Appl. Surf. Sci. 2011, 257(6), 2058-2065.  doi: 10.1016/j.apsusc.2010.08.129

    8. [8]

      Rattanasom, N.; Saowapark, T.; Deeprasertkul, C. Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym. Test. 2007, 26(3), 369-377.  doi: 10.1016/j.polymertesting.2006.12.003

    9. [9]

      Arrighi, V.; Mcewen, I. J.; Qian, H.; Prieto, M. B. S. The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer 2003, 44(20), 6259-6266.  doi: 10.1016/S0032-3861(03)00667-0

    10. [10]

      Stöckelhuber, K. W.; Svistkov, A. S.; Pelevin, A. G.; Heinrich, G. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 2011, 44(11), 4366-4381.  doi: 10.1021/ma1026077

    11. [11]

      Yatsuyanagi, F.; Suzuki, N.; Ito, M.; Kaidou, H. Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 2001, 42(23), 9523-9529.  doi: 10.1016/S0032-3861(01)00472-4

    12. [12]

      He, A. H.; Huang, B. C.; Jiao, S. K.; Hu, Y. L. Synthesis of a high-trans-1,4-butadiene/isoprene copolymers with supported titanium catalysts. J. Appl. Polym. Sci. 2003, 89(7), 1800-1807.  doi: 10.1002/(ISSN)1097-4628

    13. [13]

      Jiang, X. B.; Zhang, Q. F.; He, A. H. Synthesis and characterization of trans-1,4-butadiene/isoprene copolymers: determination of sequence distribution and thermal properties. Chinese J. Polym. Sci. 2015, 33(6), 815-822.  doi: 10.1007/s10118-015-1626-y

    14. [14]

      Zhang, Q. F.; Jiang, X. B.; He, A. H. Synthesis and characterization of trans-1,4-butadiene/isoprene copolymers: determination of monomer reactivity ratios and temperature dependence. Chinese J. Polym. Sci. 2014, 32(8), 1068-1076.  doi: 10.1007/s10118-014-1467-0

    15. [15]

      He, A. H.; Yao, W.; Huang, B. C.; Huang, Y. Q.; Jiao, S. K. Synthesis of high trans-1,4-butadiene-isoprene copolymers by supported titanium catalysts. Acta Polymerica Sinica (in Chinese) 2002, 19-24.

    16. [16]

      Niu, Q. T.; Jiang, X. B.; He, A. H. Synthesis of the spherical trans-1,4-polyisoprene/trans-1,4-poly(butadiene-co-isoprene) rubber alloys within reactor, Polymer, 2014, 55, 2146-2152  doi: 10.1016/j.polymer.2014.03.013

    17. [17]

      Niu, Q. T.; Zou, C.; Liu, X. Y.; Wang, R. G.; He, A. H. Isothermal crystallization fractionation and fraction characterization of trans-1,4-poly(isoprene-co-butadiene). Polymer 2017, 109, 197-204.  doi: 10.1016/j.polymer.2016.12.028

    18. [18]

      Wang, H.; Zou, C.; He, A. H. Characterization of trans-1,4-poly(butadiene-co-isoprene) copolymer rubber and its application as hump strip stocks in PCR tires. Acta Polymerica Sinica (in Chinese) 2015, 296-305.

    19. [19]

      He, A. H.; Yao, W.; Huang, B. C. Properties of a new synthetic rubber: High-trans-1,4-poly(butadiene-co-isoprene) rubber. J. Appl. Polym. Sci. 2004, 92(5), 2941-2948.  doi: 10.1002/(ISSN)1097-4628

    20. [20]

      Wang, H.; Cui, H. H.; Ma, Y. S.; Zhang, J. P.; Song, L. Y.; He, A. H. The study of trans-1,4-poly(butadiene-co-isoprene) copolymer rubbers as tire belts stocks. Polym. Bull. 2016, (10), 61-67.

    21. [21]

      Wang, H.; Song, L. Y.; Ma, Y. S.; Wang, R. G.; He, A. H. The structures and properties of high performance PCR tire tread stock modified with trans-1,4-poly(butadiene-co-isoprene) copolymer rubber. Acta Polymerica Sinica (in Chinese) 2018, (3), 419-428.  doi: 10.11777/j.issn1000-3304.2017.17101

    22. [22]

      Zhang, X. P.; Cui, H. H.; Song, L. Y.; Ren, H. C.; Wang, R. G.; He, A. H. Elastomer nanocomposites with superior dynamic mechanical properties via trans-1,4-poly(butadiene-co-isoprene) incorporation. Compos. Sci. Technol. 2018, 158, 156-163.  doi: 10.1016/j.compscitech.2018.02.025

    23. [23]

      Wang, H.; Zhang, J. P.; Wang, R. G.; He, A. H. Properties of nature rubber/high trans-1,4-poly(butadiene-co-isoprene) rubber blends. China Rubber Ind. 2018, 65(2), 167-172.

    24. [24]

      Zhang, Z. P.; Wang, H.; Ren, H. C.; Wang, R. G.; He, A. H. Rubber nanocomposites with nano-scale phase structures and kinetically inhibited filler flocculation for enhanced integrated performances via reactive multi-block copolymer incorporation. Ind. Eng. Chem. Res. 2019, 58, 917−925  doi: 10.1021/acs.iecr.8b04958

    25. [25]

      Wang, H.; Zhang, X. P.; Nie, H. R.; Wang, R. G.; He, A. H. Multi-block copolymer as reactive multifunctional compatibilizer for NR/BR blends with desired network structures and dynamical properties: Compatibility, co-vulcanization and filler dispersion. Comps. Part A-Appl. S. 2019, 116, 197-205.  doi: 10.1016/j.compositesa.2018.11.001

    26. [26]

      Boochathum, P.; Prajudtake, W. Vulcanization of cis- and trans-polyisoprene and their blends: Cure characteristics and crosslink distribution. Eur. Polym. J. 2001, 37(3), 417-427.  doi: 10.1016/S0014-3057(00)00137-3

    27. [27]

      Niu, Q. T.; Li, W. T.; Liu, X. Y.; He, A. H. Trans-1,4-stereospecific copolymerization of isoprene and butadiene catalyzed by TiCl4/MgCl2 type Ziegler-Natta catalyst II. Copolymerization kinetics and mechanism. Polymer 2018, 143, 173-183.  doi: 10.1016/j.polymer.2018.04.007

    28. [28]

      Li, W. T.; Nie, H. R.; Shao, H. F.; Ren, H. C.; He, A. H. Synthesis, chain structures and phase morphologies of trans-1,4-poly(butadiene-co-isoprene) copolymers. Polymer 2018, 156, 148-161.  doi: 10.1016/j.polymer.2018.10.002

    29. [29]

      Marigo, A.; Marega, C.; Causin, V.; Ferrari, P. Influence of thermal treatments, molecular weight, and molecular weight distribution on the crystallization of β-isotactic polypropylene. J. Appl. Polym. Sci. 2010, 91(2), 1008-1012.

    30. [30]

      Benedetti, E.; D'Alessio, A.; Bertolutti, C.; Vergamini, P.; Fanti, N. D.; Pianca, M. Influence of molecular weight on the crystallization of poly(vinylidene fluoride). Polym. Bull. 1989, 22(5-6), 645-651.  doi: 10.1007/BF00718947

    31. [31]

      Shao, H.; Wang, S.; He, A. The influence of molecular weight on high shear rate macroscopic rheological properties of polybutene-1 melts through rubber-processing analyzer. Polym. Bull. 2016, 73(11), 3209-3220.  doi: 10.1007/s00289-016-1650-2

    32. [32]

      Yuan, M.; Galloway, J. A.; Hoffman, R. J. Influence of molecular weight on rheological, thermal, and mechanical properties of PEEK. Polym. Eng. Sci. 2011, 51(1), 94-102.  doi: 10.1002/pen.v51.1

    33. [33]

      Jordens, K.; Wilkes, G. L.; Janzen, J.; Rohlfing, D. C.; Welch, M. B. The influence of molecular weight and thermal history on the thermal, rheological, and mechanical properties of metallocene-catalyzed linear polyethylenes. Polymer 2000, 41(19), 7175-7192.  doi: 10.1016/S0032-3861(00)00073-2

    34. [34]

      Zuiderduin, W. C. J.; Homminga, D. S.; Huétink, H. J.; Gaymans, R. J. Influence of molecular weight on the fracture properties of aliphatic polyketone terpolymers. Polymer 2003, 44(20), 6361-6370.  doi: 10.1016/S0032-3861(03)00635-9

    35. [35]

      Nunes, R. W.; Martin, J. R.; Johnson, J. F. Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. Polym. Eng. Sci. 2010, 22(4), 205-228.

    36. [36]

      Ismail, H.; Freakley, P. K.; Sutherland, I.; Sheng, E. Effects of multifunctional additive on mechanical properties of silica filled natural rubber compound. Eur. Polym. J. 1995, 31(11), 1109-1117.  doi: 10.1016/0014-3057(95)00066-6

    37. [37]

      Liu, X.; Zhao, S. H.; Zhang, X. Y.; Li, X. L.; Bai, Y. Preparation, structure, and properties of solution-polymerized styrene- butadiene rubber with functionalized end-groups and its silica-filled composites. Polymer 2014, 55(8), 1964-1976.  doi: 10.1016/j.polymer.2014.02.067

    38. [38]

      Huneau, B.; Masquelier, I.; Marco, Y.; Saux, V. L.; Noizet, S.; Schiel, C.; Charrier, P. Fatigue crack initiation in a carbon black-filled natural rubber. Rubber Chem. Technol. 2016, 89, 126-141.

  • 加载中
    1. [1]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    2. [2]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    3. [3]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    4. [4]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    5. [5]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    6. [6]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    7. [7]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    8. [8]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    9. [9]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    10. [10]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    11. [11]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    12. [12]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    15. [15]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    16. [16]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    17. [17]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    18. [18]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    19. [19]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    20. [20]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

Metrics
  • PDF Downloads(0)
  • Abstract views(742)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return