Citation: Jian Hu, Rui Xin, Chun-Yue Hou, Shou-Ke Yan, Ji-Chun Liu. Direct Comparison of Crystal Nucleation Activity of PCL on Patterned Substrates[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 693-699. doi: 10.1007/s10118-019-2226-z shu

Direct Comparison of Crystal Nucleation Activity of PCL on Patterned Substrates

  • Corresponding author: Shou-Ke Yan, skyan@qust.edu.cn
  • Received Date: 24 December 2018
    Revised Date: 9 January 2019
    Accepted Date: 1 January 2018
    Available Online: 27 February 2019

  • A sample containing different regions with poly(ε-caprolactone) (PCL), oriented polyethylene (PE), and oriented isotactic polypropylene (iPP) films in contact with glass slide has been prepared to be observed in the same view field in an optical microscope and the crystallization of PCL in different regions during cooling from 80 °C down to room temperature at a rate of 1 °C·min−1 was studied. The results showed that the crystallization of PCL started first at the PE surface and then at the iPP surface, while its bulk crystallization occured much later. This indicates that though both PE and iPP are active in nucleating PCL, the nucleation ability of PE is stronger than that of iPP. This was due to a better lattice matching between PCL and PE than that between PCL and iPP. Moreover, since lattice matching existed between every (hk0) lattice planes of both PCL and PE but only between the (100)PCL and (010)iPP lattice planes, the uniaxial orientation feature of the used PE and iPP films resulted in the existence of much more active nucleation sites of PCL on PE than on iPP. This led to the fact that the nucleation density of PCL at PE surface was so high that the crystallization of PCL at PE surface took place in a way like the film developing process with PCL microcrystallites happened everywhere with crystallization proceeding simultaneously. On the other hand, even though iPP also enhanced the nucleation density of PCL evidently, the crystallization of PCL at iPP surface included still a nucleation and crystal growth processes similar to that of its bulk crystallization.
  • 加载中
    1. [1]

      Xu, J.; Zhang, Z.; Xu, H.; Chen, J.; Ran, R.; Li, Z. Highly enhanced crystallization kinetics of poly(L-lactic acid) by poly(ethylene glycol) grafted graphene oxide simultaneously as heterogeneous nucleation agent and chain mobility promoter. Macromolecules 2015, 48, 4891-4900  doi: 10.1021/acs.macromol.5b00462

    2. [2]

      Zhong, G.; Li, Z.; Li, L.; Shen, K. Crystallization of oriented isotactic polypropylene (iPP) in the presence of in situ poly(ethylene terephthalate) (PET) microfibrils. Polymer 2008, 49, 4271-4278  doi: 10.1016/j.polymer.2008.07.056

    3. [3]

      Chen, L.; Zhou, W.; Su, F.; Zhang, W.; Chen, P.; Ji, Y.; Li, L. Filler-induced heterogeneous distribution of stretch-induced crystallization in natural rubber: An in-situ synchrotron-radiation micro-focused scanning X-ray diffraction study. Polymer 2017, 115, 217-223  doi: 10.1016/j.polymer.2017.03.043

    4. [4]

      Kar, G.P.; Bose, S. Nucleation barrier, growth kinetics in ternary polymer blend filled with preferentially distributed carbon nanotubes. Polymer 2017, 128, 229-241  doi: 10.1016/j.polymer.2017.09.019

    5. [5]

      Deng, H.; Xie, N.; Li, W.; Qiu, F.; Shi, A.C. Perfectly ordered patterns via corner-induced heterogeneous nucleation of self-assembling block copolymers confined in hexagonal potential wells. Macromolecules 2015, 48, 4174-4182  doi: 10.1021/acs.macromol.5b00681

    6. [6]

      Flieger, A.K.; Schulz, M.; Thurn-Albrecht, T. Interface-induced crystallization of polycaprolactone on graphite via first-order prewetting of the crystalline phase. Macromolecules 2018, 51, 189-194  doi: 10.1021/acs.macromol.7b02113

    7. [7]

      Chatterjee, A.M.; Price, F.P.; Newmann, S. Heterogeneous nucleation of crystallization of high polymers from the melt. I. Substrate-induced morphologies. J. Polym. Sci., Polym. Phys. Ed. 1975, 13, 2369-2383  doi: 10.1002/pol.1975.180131211

    8. [8]

      Chatterjee, A.M.; Price, F.P.; Newmann, S. Heterogeneous nucleation of crystallization of high polymers from the melt. II. Aspects of transcrystallinity and nucleation density. J. Polym. Sci., Polym. Phys. Ed. 1975, 13, 2385-2390  doi: 10.1002/pol.1975.180131212

    9. [9]

      Chatterjee, A.M.; Price, F.P.; Newmann, S. Heterogeneous nucleation of crystallization of high polymers from the melt. III. Nucleation kinetics and interfacial energies. J. Polym. Sci., Polym. Phys. Ed. 1975, 13, 2391-2400

    10. [10]

      Fillon, B.; Lotz, B.; Thierry, A.; Wittmann, J.C. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 1395-1405  doi: 10.1002/polb.1993.090311014

    11. [11]

      Fillon, B.; Wittmann, J.C.; Lotz, B.; Thierry, A. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric "efficiency scale" and evaluation of nucleating additives in isotactic polypropylene (α phase). J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 1383-1393

    12. [12]

      Petermann, J.; Gohil, R.M. A new method for the preparation of high modulus thermoplastic films. J. Mater. Sci. 1979, 14, 2260-2264  doi: 10.1007/BF00688435

    13. [13]

      Gohil, R. M.; Miles, M.J.; Petermann, J. On the molecular mechanism of the crystal transformation (tetragonai-hexagonai) in polybutene-1. J. Macromol. Sci.-Phys. 1982, B21(2), 189-201

    14. [14]

      Guan, G.; Zhang, J.; Sun, Li, H.; Yan, S.; Lotz, B. Oriented overgrowths of poly(L-lactide) on oriented isotactic polypropylene: A sequence of soft and hard epitaxies. Macromol. Rapid Commun. 2018, 39, 1800353  doi: 10.1002/marc.201800353

    15. [15]

      Guo, Z.; Li, S.; Liu, X.; Zhang, J.; Li, H.; Sun, X.; Ren, Z.; Yan, S. Epitaxial crystallization of isotactic poly(methyl methacrylate) from different states on highly oriented polyethylene thin film. J. Phys. Chem. B 2018, 122, 9425-9433  doi: 10.1021/acs.jpcb.8b08193

    16. [16]

      Ma, L.; Zhou, Z.; Zhang, J.; Sun, X.; Li, H.; Zhang, J.; Yan, S. Temperature-dependent recrystallization morphologies of carbon-coated isotactic polypropylene highly oriented thin films. Macromolecules 2017, 50, 3582-3589  doi: 10.1021/acs.macromol.7b00299

    17. [17]

      Zhang, J.; Ruan, J.; Yan, S. Epitaxy of PLLA/PCL blends on highly oriented polyethylene substrate. Acta Polymerica Sinica (in Chinese) 2017, 9, 1524-1529

    18. [18]

      Ma, L.; Zhang, J.; Memon, MA; Sun, X; Li, H; Yan, S. Melt recrystallization behavior of carbon coated melt-drawn oriented isotactic polypropylene thin films. Polym. Chem. 2015, 6, 7524-7532  doi: 10.1039/C5PY01083G

    19. [19]

      Zhou, H.; Yan, S. Can the structures of semicrystalline polymers be controlled using interfacial crystallographic interactions? Macromol. Chem. Phys. 2013, 214, 639-653  doi: 10.1002/macp.v214.6

    20. [20]

      Wu, J.; Zhou, H.; Liu, Q.; Yan, S. Application of electron diffraction in the structure characterization of polymer crystals. Chinese J. Polym. Sci. 2013, 31(6), 841-852  doi: 10.1007/s10118-013-1269-9

    21. [21]

      Yan, C.; Guo, L.; Chang, H.; Yan, S. Induced crystallization of poly(ethylene adipate) by highly oriented polyethylene. Chinese J. Polym. Sci. 2013, 31(8), 1173-1182  doi: 10.1007/s10118-013-1292-x

    22. [22]

      Li, H.; Yan, S. Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules 2011, 44, 417-428  doi: 10.1021/ma1023457

    23. [23]

      An, Y.; Jiang, S.; Yan, S.; Sun J.R.; Chen, X. Crystallization behavior of polylactide on highly oriented polyethylene thin films. Chinese J. Polym. Sci. 2011, 29, 513-519  doi: 10.1007/s10118-010-1028-0

    24. [24]

      Chang, H.; Guo, Q.; Shen, D.; Li, L.; Qiu, Z.; Wang, F.; Yan, S. A study on the oriented recrystallization of carbon-coated pre-oriented ultrathin polyethylene films. J. Phys. Chem. B 2010, 114, 13104-13109

    25. [25]

      Yan, S. Origin of oriented recrystallization of carbon coated pre-oriented ultra-thin polymer films. Macromolecules 2003, 36, 339-345  doi: 10.1021/ma021387o

    26. [26]

      Yan, S.; Petermann, J.; Yang D. Effects of lamellar thicknesses on the epitaxial crystallization of HDPE on the iPP substrate films. Polym. Bull. 1997, 38, 87-94

    27. [27]

      Yang, D.C.; Thomas, E.L. An electron microscopy and X-ray diffraction study of the microstructures of melt-drawn polyethylene films. J. Mater. Sci. 1984, 19, 2098-2110  doi: 10.1007/BF01058086

    28. [28]

      Bu, X.; Li, H.; Yan, S. The propagation of crystal orientation in poly(ε-caprolactone)/poly(vinyl chloride) blend film after removal of induction layer. Colloid Polym. Sci. 2017, 295, 1635-1642  doi: 10.1007/s00396-017-4127-4

    29. [29]

      Tao, X.; Yan, S.; Yang D. Epitaxial crystallization of poly(ε-caprolactone) on highly oriented isotactic polypropylene. Chinese Chem. Lett. 1993, 4, 1093-1096

    30. [30]

      Liu, J.; Li, H.; Yan, S.; Xiao, Q.; Petermann, J. Epitaxial- and trans-crystallization of PCL on the highly oriented PE substrates. Colloid Polym. Sci. 2003, 281, 601-607  doi: 10.1007/s00396-002-0810-0

    31. [31]

      Chang, H.; Zhang, J.; Li, L.; Wang, Z.; Yang, C.; Takahashi, I.; Ozaki, Y.; Yan, S. A study on the epitaxial ordering process of the polycarprolactone on the highly oriented polyethylene substrate. Macromolecules 2010, 43, 362-366  doi: 10.1021/ma902235f

    32. [32]

      Yan, C.; Li, H.; Zhang, J.; Ozaki, Y.; Shen, D.; Yan, D.; Shi, A.C.; Yan, S. Surface induced anisotropic chain ordering of polycarprolactone on oriented polyethylene substrate -epitaxy and soft epitaxy. Macromolecules 2006, 39, 8041-8048  doi: 10.1021/ma061188v

    33. [33]

      Wittmann, J.C.; Lotz, B. Epitaxial Crystallization of Aliphatic Polyesters on Trioxane and Various Aromatic Hydrocarbons. J. Polym. Sci., Part B: Polym. Phys. 1981, 19, 1853-1864  doi: 10.1002/pol.1981.180191205

    34. [34]

      Wittmann, J.C.; Lotz, B. Epitaxial crystallization of polyethylene on organic substrates: A reappraisal of the mode of action of selected nucleating agents. J. Polym. Sci. Part B: Polym. Phys. 1981, 19, 1837-1851  doi: 10.1002/pol.1981.180191204

    35. [35]

      Wittmann, J.C.; Lotz, B. Epitaxial crystallization of polymers on organic and polymeric substrate. Prog. Polym. Sci. 1990, 15, 909-948  doi: 10.1016/0079-6700(90)90025-V

    36. [36]

      Hu, H.; Dorset, D.L. Crystal structure of poly(ε-caprolactone). Macromolecules 1990, 23, 4604-4607  doi: 10.1021/ma00223a017

    37. [37]

      Bittiger, H.; Marchessault, R.H.; Niegisch, W.O. Crystal structure of poly-ε-caprolactone. Acta Cryst. 1970, B26, 1923-1927

    38. [38]

      Chatani, Y.; Okita, Y.; Tadokoro, H.; Yamashita, Y. Structural studies of polyesters. III. Crystal structure of poly-ε-caprolactone. Polym. J. 1970, 1, 555-562  doi: 10.1295/polymj.1.555

    39. [39]

      Núñeza, E.; Ferrandoa, C.; Malmströma, E.; Claessona, H.; Wernerb, P.E.; Gedde, U.W. Crystal structure, melting behaviour and equilibrium melting point of star polyesters with crystallisable poly(ε-caprolactone) arms. Polymer 2004, 45, 5251-5263  doi: 10.1016/j.polymer.2004.05.047

    40. [40]

      Bunn, C.W. The crystal structure of long-chain normal paraffin hydrocarbons. The “shape” of the >ch2 group. Trans. Faraday Soc. 1939, 35, 482-491  doi: 10.1039/TF9393500482

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    3. [3]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    4. [4]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    5. [5]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    6. [6]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    7. [7]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    8. [8]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    9. [9]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    10. [10]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    11. [11]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    12. [12]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    13. [13]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    14. [14]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    15. [15]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    16. [16]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    17. [17]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    18. [18]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    19. [19]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    20. [20]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

Metrics
  • PDF Downloads(0)
  • Abstract views(678)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return