Synthesis and Properties of High Performance Functional Polyimides Containing Rigid Nonplanar Conjugated Fluorene Moieties
- Corresponding author: Yi Zhang, ceszy@mail.sysu.edu.cn † These two authors contribute equally to this work.
Citation:
Yi-Wu Liu, Li-Shuang Tang, Lun-Jun Qu, Si-Wei Liu, Zhen-Guo Chi, Yi Zhang, Jia-Rui Xu. Synthesis and Properties of High Performance Functional Polyimides Containing Rigid Nonplanar Conjugated Fluorene Moieties[J]. Chinese Journal of Polymer Science,
;2019, 37(4): 416-427.
doi:
10.1007/s10118-019-2225-0
Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M., in Polyimides, Chapman & Hall, London, 1990.
Ge, J. J.; Li, C. Y.; Xue, G.; Mann, I. K.; Zhang, D.; Harris, F. W.; Cheng, S. Z. D.; Hong, S. C.; Zhuang, X.; Shen, Y. R. Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains. J. Am. Chem. Soc. 2001, 123, 5768-5776.
doi: 10.1021/ja0042682
Ling, Q. D.; Chang, F. C.; Song, Y.; Zhu, C. X.; Liaw, D. J.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. Synthesis and dynamic random access memory behavior of a functional polyimide. J. Am. Chem. Soc. 2006, 128, 8732-8733.
doi: 10.1021/ja062489n
Ling, Q. D.; Liaw, D. J.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; NeoK, G. H. Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 2008, 33, 917-978.
doi: 10.1016/j.progpolymsci.2008.08.001
Khan, Q. U.; Jia, N. F.; Tian, G. F.; Qi, S. L.; Wu, D. Z. Triggering WORM/SRAM memory conversion in a porphyrinated polyimide via Zn complexation as the internal electrode. J. Phys. Chem. C 2017, 121, 9153-9161.
doi: 10.1021/acs.jpcc.7b01732
Shi, L.; Tian, G. F.; Ye, H. B.; Qi, S. L.; Wu, D. Z. Volatile static random access memory behavior of an aromatic polyimide bearing carbazole-tethered triphenylamine moieties. Polymer 2014, 5, 1150-1159.
Kuorosawa, T.; Chueh, C. C.; Liu, C. L.; Higashihara, T.; Ueda, M.; Chen, W. C. High performance volatile polymeric memory devices based on novel triphenylamine-based polyimides containing mono- or dual-mediated phenoxy linkages. Macromolecules, 2010, 43, 1236-1244.
doi: 10.1021/ma902574n
Liu, Y. W.; Zhang, Y.; Lan, Q.; Liu, S. W.; Qin, Z. X.; Chen, L. H.; Zhao, C. Y.; Chi, Z. G.; Xu, J. R.; Economy, J. High-performance functional polyimides containing rigid nonplanar conjugated triphenylethylene moieties, Chem. Mater. 2012, 24, 1212-1222.
Liu, Y. W.; Zhang, Y.; Lan, Q.; Qin, Z. X.; Liu, S. W.; Zhao, C. Y.; Chi, Z. G.; Xu, J. R. Synthesis and properties of high-performance functional polyimides containing rigid nonplanar conjugated tetraphenylethylene moieties. J Polym. Sci. Part A: Polym. Chem. 2013, 51, 1302-1314.
doi: 10.1002/pola.26498
Chien, C. W.; Wu, C. H.; Tsai, Y. T.; Kung, Y. C.; Lin, C. Y.; Hsu, P. C.; Hsieh, H. H.; Wu, C. C.; Yeh, Y. H.; Leu, C. M.; Lee, T. M. High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates. IEEE Trans. Electron Devices 2011, 58, 1440-1446.
doi: 10.1109/TED.2011.2109041
Kim, S.; Yoo, H.; Rana, T. R.; Enkhbat, T.; Han, G.; Kim, J.; Song, S.; Kim, K.; Gwak, J.; Eo, Y. J.; Yun, J. H. Effect of crystal rrientation and conduction band grading of absorber on efficiency of Cu(In, Ga)Se-2 solar cells grown on flexible polyimide foil at low temperature. Adv. Energy Mater. 2018, 8, 1801501.
doi: 10.1002/aenm.v8.26
Thostenson, J. O.; Li, Z.; Kim, C. H. J.; Ajnsztajn, A.; Parker, C. B.; Liu, J.; Peterchev, A. V.; Glass, J. T.; Goetz, S. M. Integrated flexible conversion circuit between a flexible photovoltaic and supercapacitors for powering wearable sensors. J. Electrochem. Soc. 2018, 165, B3122-B3129.
doi: 10.1149/2.0141808jes
Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907-974.
doi: 10.1016/j.progpolymsci.2012.02.005
Liu, Y. W.; Qian, C.; Qu, L. J.; Wu, Y. N.; Zhang, Y.; Wu, X. H.; Zou, B.; Chen, W. X.; Chen, Z. Q.; Chi, Z. G.; Liu, S. W.; Chen, X. D. and Xu, J. R. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem. Mater. 2015, 27, 6543-6549.
doi: 10.1021/acs.chemmater.5b01798
Hecht, J. The bandwidth bottleneck that is throttling the internet. Nature News 2016, 536, 139-142.
doi: 10.1038/536139a
He, F.; Gao, Y.; Jin, K.; Wang, J.; Sun, J.; Fang, Q. Conversion of a biorenewable plant oil (Anethole) to a new fluoropolymer with both low dielectric constant and low water uptake. ACS Sustainable Chem. Eng. 2016, 4, 4451-4456.
doi: 10.1021/acssuschemeng.6b01065
Choi, M. C.; Wakita, J. J.; Ha, C. S.; Ando, S. J. Highly transparent and refractive polyimides with controlled molecular structure by chlorine side groups. Macromolelucles 2009, 42, 5112-5120.
doi: 10.1021/ma900104z
Qu, L. J.; Tang, L. S.; Bei, R. X.; Zhao, J. ; Chi, Z. G.; Liu, S. W.; Chen, X. D.; Aldred, M. P. ; Zhang, Y.; Xu, J. R. Flexible multifunctional aromatic polyimide film: Highly efficient photoluminescence, resistive switching characteristic, and electroluminescence. ACS Appl. Mater. Interfaces 2018, 10, 11430-11435.
doi: 10.1021/acsami.8b02712
Qu, L. J.; Huang, S. D.; Zhang, Y.; Chi, Z. G.; Liu, S. W.; Chen, X. D.; Xu, J. R. Multi-functional polyimides containing tetraphenyl fluorene moieties: fluorescence and resistive switching behaviors. J. Mater. Chem. C 2017, 5, 6457-6466.
doi: 10.1039/C7TC01807J
Liu, J. G.; Nakamura, Y.; Ogura, T.; Shibasaki, Y.; Ando, S.; Ueda, M. Optically transparent sulfur-containing polyimide-TiO(2) nanocomposite films with high refractive index and negative pattern formation from poly(amic acid)-TiO2 nanocomposite film. Chem. Mater. 2008, 20, 273-281.
doi: 10.1021/cm071430s
Hsiao, S. H.; Wang, H. M.; Chen, W. J.; Lee, T. M.; Leu, C. M. Synthesis and properties of novel triptycene-based polyimides. J. Polym. Sci., Part A 2011, 49, 3109-3120.
doi: 10.1002/pola.24748
Chern, Y. T.; Tsai, J. Y. Low dielectric constant and high organosolubility of novel polyimide derived from unsymmetric 1,4-bis(4-aminophenoxy)-2,6-di-tert-butylbenzene. Macromolecules 2008, 41, 9556-9564.
doi: 10.1021/ma802305q
Huang, W.; Yan, D. Y.; Lu, Q. H. Synthesis and properties of highly soluble polyimide containing perylene units. Chem. J. Chinese U. Chinese. 2002. 23, 2005-2007.
Yang, J. T.; Ji, B.; Huang, W.; Zhou, Y. F.; Yan, D. Y. Synthesis and characterization of organsoluble polyimide and copolyimides from alicyclic dianhydride. Chinese J. Poly, Sci. 2007, 25, 409-417.
doi: 10.1142/S025676790700228X
Wang, C. Y.; Chen, W. T.; Xu, C.; Zhao, X. Y.; Li, J. Fluorinated polyimide/POSS hybrid polymers with high solubility and low dielectric donstant. Chinese J. Poly, Sci. 2016, 34, 1363-1372.
doi: 10.1007/s10118-016-1845-x
Mi, Z. M.; Liu, Z. X.; Wang, C. B.; Liu, Y. H.; Zhou, C. J.; Wang, D. M.; Zhao, X. G.; Zhou, H. W.; Zhang, Y. M.; Chen, C. H. Transparent and soluble polyimide films containing 4,4'-isopropylidenedicyclohexanol (cis-HBPA) units: Preparation, characterization, thermal, mechanical, and dielectric properties. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 2115-2128.
doi: 10.1002/pola.v56.18
Yin, X. D.; Feng, Y. Y.; Zhao, Q.; Li, Y.; Li, S. W.; Dong, H. L.; Hu, W. P.; Feng, W. Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant. J. Mater. Chem. C 2018, 6, 6378-6384.
doi: 10.1039/C8TC00998H
Luo, L. B.; Dai, Y.; Yuan, Y. H.; Wang, X.; Liu, X. Y. Control of head/tail isomeric structure in polyimide and isomerism-derived difference in molecular packing and properties. Macromol. Rapid Commun. 2017, 38, 1700404.
doi: 10.1002/marc.v38.23
Lin, C. H.; Wong, T. I.; Wang, M. W.; Chang, H. C.; Juang, T. Y. Synthesis of diallyl-containing polyimide and the effect of allyl groups on properties. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 513-520.
doi: 10.1002/pola.v53.4
Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316.
doi: 10.1021/ma048774d
Hahm, S. G.; Choi, S.; Hong, S. H.; Lee, T. J.; Park, S.; Kim, D. M.; Kwon, W. S.; Kim, K.; Kim, O.; Ree, M. Novel rewritable, non-volatile memory devices based on thermally and dimensionally stable polyimide thin films. Adv. Funct. Mater. 2008, 18, 3276-3282.
doi: 10.1002/adfm.v18:20
Chen, W.; Ji, M.; Yang, S. Y. High thermal stable polyimide resins derived from phenylethynyl-endcapped fluorenyl oligoimides with low melt viscosities. Chinese J. Polym. Sci. 2016, 34, 933-948.
doi: 10.1007/s10118-016-1813-5
Liu, Y. W.; Zhang, Y.; Wu, X. H.; Lan, Q.; Chen, C. S.; Liu, S. W.; Chi, Z. G.; Jiang, L.; Chen, X. D.; Xu, J. R. Deep-blue luminescent compound emitting efficiently both in solution and solid with considerable blue-shifting in aggregation. J Mater. Chem. C 2014, 2, 1068-1075.
Chang, C. W.; Yen, H. J.; Huang, K. Y.; Yeh, J. M.; Liou, G. S. Novel organosoluble aromatic polyimides bearing pendant methoxy-substituted triphenylamine moieties: Synthesis, electrochromic, and gas separation properties. J. Polym. Chem., Part A: Polym. Chem., 2008, 46, 7937-7949.
doi: 10.1002/pola.v46:24
Liou, G. S.; Hsiao, S. H.; Fang, Y. K. Electrochromic properties of novel strictly alternating poly(amine-amide- imide)s with electroactive triphenylamine moieties. Eur. Polym. J. 2006, 42, 1533-1540.
doi: 10.1016/j.eurpolymj.2006.01.017
Liu, Y. L.; Wang, K. L.; Huang, G. S.; Zhu, C. X.; Tok, E. S.; Neoh, K. G.; Kang, E. T. Volatile electrical switching and static random access memory effect in a functional polyimide containing oxadiazole moietie. Chem. Mater. 2009, 21, 3391-3399.
doi: 10.1021/cm9010508
Wang H. M.; Hsiao, S. H. Electrochemically and electrochromically stable polyimides bearing tert-butyl-blocked N, N, N', N'-tetraphenyl-1,4-phenylenediamine units Polymer 2009, 50, 1692-1699.
doi: 10.1016/j.polymer.2009.02.009
Zhou, Z. X.; Huang, W. X.; Long, Y. B.; Chen, Y. Q.; Yu, Q. X.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. An oxidation-induced fluorescence turn-on approach for non-luminescent flexible polyimide films. J. Mater. Chem. C 2017, 5, 8545-8552.
Zhou, Z. X.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Flexible and highly fluorescent aromatic polyimide: design, synthesis, properties, and mechanism. J. Mater. Chem. C 2016, 4, 10509-10517.
doi: 10.1039/C6TC03889A
Liu, Y. W.; Zhou, Z. X.; Qu, L. J.; Chen, Z. Q.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Exceptionally thermostable and soluble aromatic polyimides with special characteristics: Intrinsic ultralow dielectric constant, static random access memory behaviors, transparency and fluorescence, Mater. Chem. Frontiers 2017, 1, 326-337.
doi: 10.1039/C6QM00027D
Jia, M.; Li, Y.; He, C.; Huang, X. Soluble perfluorocycl- butyl aryl ether-based polyimide for high-performance dielectric material. ACS Appl. Mater. Interfaces, 2016, 8, 26352-26358.
doi: 10.1021/acsami.6b09383
Kong, L.; Cheng, Y.; Jin, Y.; Ren, Z.; Li, Y.; Xiao, F. Adamantyl-based benzocyclobutene low-k polymers with good physical properties and excellent planarity. J. Mater. Chem. C, 2015, 3, 3364-3370.
doi: 10.1039/C4TC02854F
Chern, Y. T.; Shiue, H. C. Low Dielectric constants of soluble polyimides based on adamantane. Macromolecules, 1997, 30, 4646-4651.
doi: 10.1021/ma970520n
Chern, Y. T.; Shiue, H. C. Low dielectric constants of soluble polyimides derived from the novel 4,9-bis[4-(4- aminophenoxy)phenyl]diamantane Macromolecules 1997, 30, 5766-5772.
doi: 10.1021/ma9706337
Chern, Y. T. Low dielectric constant polyimides derived from novel 1,6-bis[4-(4-aminophenoxy)phenyl]diamantine. Macromolecules 1998, 31, 5837-5844.
doi: 10.1021/ma970930b
Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Synthesis and characterization of polyimides with low dielectric constants from aromatic dianhydrides and aromatic diamine containing phenylene ether unit. Polymer 2005, 46, 5903-5908.
doi: 10.1016/j.polymer.2005.05.034
Yang, C. Y.; Hsu, S. L. C.; Chen, J. S. Synthesis and properties of 6FDA-BisAAF-PPD copolyimides for microelectronic applications. J. Appl. Polym. Sci. 2005, 98, 2064-2069.
doi: 10.1002/(ISSN)1097-4628
Jang, W.; Shin, D.; Choi, S.; Park, S.; Han, H. Effects of internal linkage groups of fluorinated diamine on the optical and dielectric properties of polyimide thin films. Polymer 2007, 48, 2130-2143.
doi: 10.1016/j.polymer.2007.02.023
Tao, L.; Yang, H.; Liu, J.; Fan, L.; Yang, S. Synthesis and characterization of highly optical transparent and low dielectric constant fluorinated polyimides. Polymer 2009, 50, 6009-6018.
doi: 10.1016/j.polymer.2009.10.022
Lee, B.; Park, Y. H.; Hwang, Y. T.; Oh, W.; Yoon J.; Ree, M. Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres. Nat. Mater. 2005, 4, 147-151.
Eslava, S.; Urrutia, J.; Busawon, A. N.; Baklanov, M. R.; Iacopi, F.; Aldea, S.; Maex, K.; Martens, J. A.; Kirschhock, C. E. A. Zeolite-Inspired low-k dielectrics overcoming limitations of zeolite films. J. Am. Chem. Soc. 2008, 130, 17528-17536.
doi: 10.1021/ja8066572
Guizhi Zhu , Junrui Tan , Longfei Tan , Qiong Wu , Xiangling Ren , Changhui Fu , Zhihui Chen , Xianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Jing REN , Ruikui YAN , Xiaoli CHEN , Huali CUI , Hua YANG , Jijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Donghui Wu , Qilin Zhao , Jian Sun , Xiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850