Citation: Yi-Wu Liu, Li-Shuang Tang, Lun-Jun Qu, Si-Wei Liu, Zhen-Guo Chi, Yi Zhang, Jia-Rui Xu. Synthesis and Properties of High Performance Functional Polyimides Containing Rigid Nonplanar Conjugated Fluorene Moieties[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 416-427. doi: 10.1007/s10118-019-2225-0 shu

Synthesis and Properties of High Performance Functional Polyimides Containing Rigid Nonplanar Conjugated Fluorene Moieties

  • Corresponding author: Yi Zhang, ceszy@mail.sysu.edu.cn
  • † These two authors contribute equally to this work.
  • Received Date: 18 December 2018
    Revised Date: 13 January 2019
    Available Online: 15 February 2019

  • A diamine (WuFDA) containing vertical rigid non-planar conjugated fluorene moiety and low polarizability group (C―F) was designed and synthesized through three steps of reactions (halogenated reaction, Suzuki coupling reaction, and reduction reaction). Four kinds of high performance functional polyimides (WuFPI-6F, WuFPI-BP, WuFPI-BT, and WuFPI-PM) were thus prepared by the condensation polymerization of WuFDA with four commercial dianhydride 6FDA, BPDA, BTDA, and PMDA, respectively. The polyimides exhibited low dielectric constant, excellent thermal stability, outstanding solubility, good film-forming property, and mechanical properties. The dielectric constants of the polyimides were in the range of 2.28−2.88 (f = 104 Hz). The 5% weight-loss temperatures (Td5%) in nitrogen were in the range of 555−584 °C, and the glass transition temperatures (Tg) were in the range of 408−448 °C. The weight loss of WuFPI-BP maintaining at 450 and 500 °C for half an hour was only 0.33% and 1.26%, respectively. All the WuFPIs could be dissolved in almost all organic solvents, even chloroform. The tensile strength and tensile modulus of these films were in the ranges of 78.6−85.7 MPa and 3.1−3.2 GPa, respectively. In addition, the polyimides displayed light color with special fluorescent and resistive switching (ON-OFF) characteristics; the maximum fluorescence emission was observed at 422−424 nm in NMP solution and at 470−548 nm in film state. The memory devices with the configuration of indium tin oxide/WuFPIs/aluminum (ITO/WuFPIs/Al) exhibited distinct volatile memory characteristics of static random access memory (SRAM), with an ON/OFF current ratio of 105−106. These functional polyimides showed attractive potential applications in the field of high performance flexible polymer photoelectronic devices or polymer memory devices.
  • 加载中
    1. [1]

      Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M., in Polyimides, Chapman & Hall, London, 1990.

    2. [2]

      Ge, J. J.; Li, C. Y.; Xue, G.; Mann, I. K.; Zhang, D.; Harris, F. W.; Cheng, S. Z. D.; Hong, S. C.; Zhuang, X.; Shen, Y. R. Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains. J. Am. Chem. Soc. 2001, 123, 5768-5776.  doi: 10.1021/ja0042682

    3. [3]

      Ling, Q. D.; Chang, F. C.; Song, Y.; Zhu, C. X.; Liaw, D. J.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. Synthesis and dynamic random access memory behavior of a functional polyimide. J. Am. Chem. Soc. 2006, 128, 8732-8733.  doi: 10.1021/ja062489n

    4. [4]

      Ling, Q. D.; Liaw, D. J.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; NeoK, G. H. Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 2008, 33, 917-978.  doi: 10.1016/j.progpolymsci.2008.08.001

    5. [5]

      Khan, Q. U.; Jia, N. F.; Tian, G. F.; Qi, S. L.; Wu, D. Z. Triggering WORM/SRAM memory conversion in a porphyrinated polyimide via Zn complexation as the internal electrode. J. Phys. Chem. C 2017, 121, 9153-9161.  doi: 10.1021/acs.jpcc.7b01732

    6. [6]

      Shi, L.; Tian, G. F.; Ye, H. B.; Qi, S. L.; Wu, D. Z. Volatile static random access memory behavior of an aromatic polyimide bearing carbazole-tethered triphenylamine moieties. Polymer 2014, 5, 1150-1159.

    7. [7]

      Kuorosawa, T.; Chueh, C. C.; Liu, C. L.; Higashihara, T.; Ueda, M.; Chen, W. C. High performance volatile polymeric memory devices based on novel triphenylamine-based polyimides containing mono- or dual-mediated phenoxy linkages. Macromolecules, 2010, 43, 1236-1244.  doi: 10.1021/ma902574n

    8. [8]

      Liu, Y. W.; Zhang, Y.; Lan, Q.; Liu, S. W.; Qin, Z. X.; Chen, L. H.; Zhao, C. Y.; Chi, Z. G.; Xu, J. R.; Economy, J. High-performance functional polyimides containing rigid nonplanar conjugated triphenylethylene moieties, Chem. Mater. 2012, 24, 1212-1222.

    9. [9]

      Liu, Y. W.; Zhang, Y.; Lan, Q.; Qin, Z. X.; Liu, S. W.; Zhao, C. Y.; Chi, Z. G.; Xu, J. R. Synthesis and properties of high-performance functional polyimides containing rigid nonplanar conjugated tetraphenylethylene moieties. J Polym. Sci. Part A: Polym. Chem. 2013, 51, 1302-1314.  doi: 10.1002/pola.26498

    10. [10]

      Chien, C. W.; Wu, C. H.; Tsai, Y. T.; Kung, Y. C.; Lin, C. Y.; Hsu, P. C.; Hsieh, H. H.; Wu, C. C.; Yeh, Y. H.; Leu, C. M.; Lee, T. M. High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates. IEEE Trans. Electron Devices 2011, 58, 1440-1446.  doi: 10.1109/TED.2011.2109041

    11. [11]

      Kim, S.; Yoo, H.; Rana, T. R.; Enkhbat, T.; Han, G.; Kim, J.; Song, S.; Kim, K.; Gwak, J.; Eo, Y. J.; Yun, J. H. Effect of crystal rrientation and conduction band grading of absorber on efficiency of Cu(In, Ga)Se-2 solar cells grown on flexible polyimide foil at low temperature. Adv. Energy Mater. 2018, 8, 1801501.  doi: 10.1002/aenm.v8.26

    12. [12]

      Thostenson, J. O.; Li, Z.; Kim, C. H. J.; Ajnsztajn, A.; Parker, C. B.; Liu, J.; Peterchev, A. V.; Glass, J. T.; Goetz, S. M. Integrated flexible conversion circuit between a flexible photovoltaic and supercapacitors for powering wearable sensors. J. Electrochem. Soc. 2018, 165, B3122-B3129.  doi: 10.1149/2.0141808jes

    13. [13]

      Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907-974.  doi: 10.1016/j.progpolymsci.2012.02.005

    14. [14]

      Liu, Y. W.; Qian, C.; Qu, L. J.; Wu, Y. N.; Zhang, Y.; Wu, X. H.; Zou, B.; Chen, W. X.; Chen, Z. Q.; Chi, Z. G.; Liu, S. W.; Chen, X. D. and Xu, J. R. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem. Mater. 2015, 27, 6543-6549.  doi: 10.1021/acs.chemmater.5b01798

    15. [15]

      Hecht, J. The bandwidth bottleneck that is throttling the internet. Nature News 2016, 536, 139-142.  doi: 10.1038/536139a

    16. [16]

      He, F.; Gao, Y.; Jin, K.; Wang, J.; Sun, J.; Fang, Q. Conversion of a biorenewable plant oil (Anethole) to a new fluoropolymer with both low dielectric constant and low water uptake. ACS Sustainable Chem. Eng. 2016, 4, 4451-4456.  doi: 10.1021/acssuschemeng.6b01065

    17. [17]

      Choi, M. C.; Wakita, J. J.; Ha, C. S.; Ando, S. J. Highly transparent and refractive polyimides with controlled molecular structure by chlorine side groups. Macromolelucles 2009, 42, 5112-5120.  doi: 10.1021/ma900104z

    18. [18]

      Qu, L. J.; Tang, L. S.; Bei, R. X.; Zhao, J. ; Chi, Z. G.; Liu, S. W.; Chen, X. D.; Aldred, M. P. ; Zhang, Y.; Xu, J. R. Flexible multifunctional aromatic polyimide film: Highly efficient photoluminescence, resistive switching characteristic, and electroluminescence. ACS Appl. Mater. Interfaces 2018, 10, 11430-11435.  doi: 10.1021/acsami.8b02712

    19. [19]

      Qu, L. J.; Huang, S. D.; Zhang, Y.; Chi, Z. G.; Liu, S. W.; Chen, X. D.; Xu, J. R. Multi-functional polyimides containing tetraphenyl fluorene moieties: fluorescence and resistive switching behaviors. J. Mater. Chem. C 2017, 5, 6457-6466.  doi: 10.1039/C7TC01807J

    20. [20]

      Liu, J. G.; Nakamura, Y.; Ogura, T.; Shibasaki, Y.; Ando, S.; Ueda, M. Optically transparent sulfur-containing polyimide-TiO(2) nanocomposite films with high refractive index and negative pattern formation from poly(amic acid)-TiO2 nanocomposite film. Chem. Mater. 2008, 20, 273-281.  doi: 10.1021/cm071430s

    21. [21]

      Hsiao, S. H.; Wang, H. M.; Chen, W. J.; Lee, T. M.; Leu, C. M. Synthesis and properties of novel triptycene-based polyimides. J. Polym. Sci., Part A 2011, 49, 3109-3120.  doi: 10.1002/pola.24748

    22. [22]

      Chern, Y. T.; Tsai, J. Y. Low dielectric constant and high organosolubility of novel polyimide derived from unsymmetric 1,4-bis(4-aminophenoxy)-2,6-di-tert-butylbenzene. Macromolecules 2008, 41, 9556-9564.  doi: 10.1021/ma802305q

    23. [23]

      Huang, W.; Yan, D. Y.; Lu, Q. H. Synthesis and properties of highly soluble polyimide containing perylene units. Chem. J. Chinese U. Chinese. 2002. 23, 2005-2007.

    24. [24]

      Yang, J. T.; Ji, B.; Huang, W.; Zhou, Y. F.; Yan, D. Y. Synthesis and characterization of organsoluble polyimide and copolyimides from alicyclic dianhydride. Chinese J. Poly, Sci. 2007, 25, 409-417.  doi: 10.1142/S025676790700228X

    25. [25]

      Wang, C. Y.; Chen, W. T.; Xu, C.; Zhao, X. Y.; Li, J. Fluorinated polyimide/POSS hybrid polymers with high solubility and low dielectric donstant. Chinese J. Poly, Sci. 2016, 34, 1363-1372.  doi: 10.1007/s10118-016-1845-x

    26. [26]

      Mi, Z. M.; Liu, Z. X.; Wang, C. B.; Liu, Y. H.; Zhou, C. J.; Wang, D. M.; Zhao, X. G.; Zhou, H. W.; Zhang, Y. M.; Chen, C. H. Transparent and soluble polyimide films containing 4,4'-isopropylidenedicyclohexanol (cis-HBPA) units: Preparation, characterization, thermal, mechanical, and dielectric properties. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 2115-2128.  doi: 10.1002/pola.v56.18

    27. [27]

      Yin, X. D.; Feng, Y. Y.; Zhao, Q.; Li, Y.; Li, S. W.; Dong, H. L.; Hu, W. P.; Feng, W. Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant. J. Mater. Chem. C 2018, 6, 6378-6384.  doi: 10.1039/C8TC00998H

    28. [28]

      Luo, L. B.; Dai, Y.; Yuan, Y. H.; Wang, X.; Liu, X. Y. Control of head/tail isomeric structure in polyimide and isomerism-derived difference in molecular packing and properties. Macromol. Rapid Commun. 2017, 38, 1700404.  doi: 10.1002/marc.v38.23

    29. [29]

      Lin, C. H.; Wong, T. I.; Wang, M. W.; Chang, H. C.; Juang, T. Y. Synthesis of diallyl-containing polyimide and the effect of allyl groups on properties. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 513-520.  doi: 10.1002/pola.v53.4

    30. [30]

      Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316.  doi: 10.1021/ma048774d

    31. [31]

      Hahm, S. G.; Choi, S.; Hong, S. H.; Lee, T. J.; Park, S.; Kim, D. M.; Kwon, W. S.; Kim, K.; Kim, O.; Ree, M. Novel rewritable, non-volatile memory devices based on thermally and dimensionally stable polyimide thin films. Adv. Funct. Mater. 2008, 18, 3276-3282.  doi: 10.1002/adfm.v18:20

    32. [32]

      Chen, W.; Ji, M.; Yang, S. Y. High thermal stable polyimide resins derived from phenylethynyl-endcapped fluorenyl oligoimides with low melt viscosities. Chinese J. Polym. Sci. 2016, 34, 933-948.  doi: 10.1007/s10118-016-1813-5

    33. [33]

      Liu, Y. W.; Zhang, Y.; Wu, X. H.; Lan, Q.; Chen, C. S.; Liu, S. W.; Chi, Z. G.; Jiang, L.; Chen, X. D.; Xu, J. R. Deep-blue luminescent compound emitting efficiently both in solution and solid with considerable blue-shifting in aggregation. J Mater. Chem. C 2014, 2, 1068-1075.

    34. [34]

      Chang, C. W.; Yen, H. J.; Huang, K. Y.; Yeh, J. M.; Liou, G. S. Novel organosoluble aromatic polyimides bearing pendant methoxy-substituted triphenylamine moieties: Synthesis, electrochromic, and gas separation properties. J. Polym. Chem., Part A: Polym. Chem., 2008, 46, 7937-7949.  doi: 10.1002/pola.v46:24

    35. [35]

      Liou, G. S.; Hsiao, S. H.; Fang, Y. K. Electrochromic properties of novel strictly alternating poly(amine-amide- imide)s with electroactive triphenylamine moieties. Eur. Polym. J. 2006, 42, 1533-1540.  doi: 10.1016/j.eurpolymj.2006.01.017

    36. [36]

      Liu, Y. L.; Wang, K. L.; Huang, G. S.; Zhu, C. X.; Tok, E. S.; Neoh, K. G.; Kang, E. T. Volatile electrical switching and static random access memory effect in a functional polyimide containing oxadiazole moietie. Chem. Mater. 2009, 21, 3391-3399.  doi: 10.1021/cm9010508

    37. [37]

      Wang H. M.; Hsiao, S. H. Electrochemically and electrochromically stable polyimides bearing tert-butyl-blocked N, N, N', N'-tetraphenyl-1,4-phenylenediamine units Polymer 2009, 50, 1692-1699.  doi: 10.1016/j.polymer.2009.02.009

    38. [38]

      Zhou, Z. X.; Huang, W. X.; Long, Y. B.; Chen, Y. Q.; Yu, Q. X.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. An oxidation-induced fluorescence turn-on approach for non-luminescent flexible polyimide films. J. Mater. Chem. C 2017, 5, 8545-8552.

    39. [39]

      Zhou, Z. X.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Flexible and highly fluorescent aromatic polyimide: design, synthesis, properties, and mechanism. J. Mater. Chem. C 2016, 4, 10509-10517.  doi: 10.1039/C6TC03889A

    40. [40]

      Liu, Y. W.; Zhou, Z. X.; Qu, L. J.; Chen, Z. Q.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Exceptionally thermostable and soluble aromatic polyimides with special characteristics: Intrinsic ultralow dielectric constant, static random access memory behaviors, transparency and fluorescence, Mater. Chem. Frontiers 2017, 1, 326-337.  doi: 10.1039/C6QM00027D

    41. [41]

      Jia, M.; Li, Y.; He, C.; Huang, X. Soluble perfluorocycl- butyl aryl ether-based polyimide for high-performance dielectric material. ACS Appl. Mater. Interfaces, 2016, 8, 26352-26358.  doi: 10.1021/acsami.6b09383

    42. [42]

      Kong, L.; Cheng, Y.; Jin, Y.; Ren, Z.; Li, Y.; Xiao, F. Adamantyl-based benzocyclobutene low-k polymers with good physical properties and excellent planarity. J. Mater. Chem. C, 2015, 3, 3364-3370.  doi: 10.1039/C4TC02854F

    43. [43]

      Chern, Y. T.; Shiue, H. C. Low Dielectric constants of soluble polyimides based on adamantane. Macromolecules, 1997, 30, 4646-4651.  doi: 10.1021/ma970520n

    44. [44]

      Chern, Y. T.; Shiue, H. C. Low dielectric constants of soluble polyimides derived from the novel 4,9-bis[4-(4- aminophenoxy)phenyl]diamantane Macromolecules 1997, 30, 5766-5772.  doi: 10.1021/ma9706337

    45. [45]

      Chern, Y. T. Low dielectric constant polyimides derived from novel 1,6-bis[4-(4-aminophenoxy)phenyl]diamantine. Macromolecules 1998, 31, 5837-5844.  doi: 10.1021/ma970930b

    46. [46]

      Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Synthesis and characterization of polyimides with low dielectric constants from aromatic dianhydrides and aromatic diamine containing phenylene ether unit. Polymer 2005, 46, 5903-5908.  doi: 10.1016/j.polymer.2005.05.034

    47. [47]

      Yang, C. Y.; Hsu, S. L. C.; Chen, J. S. Synthesis and properties of 6FDA-BisAAF-PPD copolyimides for microelectronic applications. J. Appl. Polym. Sci. 2005, 98, 2064-2069.  doi: 10.1002/(ISSN)1097-4628

    48. [48]

      Jang, W.; Shin, D.; Choi, S.; Park, S.; Han, H. Effects of internal linkage groups of fluorinated diamine on the optical and dielectric properties of polyimide thin films. Polymer 2007, 48, 2130-2143.  doi: 10.1016/j.polymer.2007.02.023

    49. [49]

      Tao, L.; Yang, H.; Liu, J.; Fan, L.; Yang, S. Synthesis and characterization of highly optical transparent and low dielectric constant fluorinated polyimides. Polymer 2009, 50, 6009-6018.  doi: 10.1016/j.polymer.2009.10.022

    50. [50]

      Lee, B.; Park, Y. H.; Hwang, Y. T.; Oh, W.; Yoon J.; Ree, M. Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres. Nat. Mater. 2005, 4, 147-151.

    51. [51]

      Eslava, S.; Urrutia, J.; Busawon, A. N.; Baklanov, M. R.; Iacopi, F.; Aldea, S.; Maex, K.; Martens, J. A.; Kirschhock, C. E. A. Zeolite-Inspired low-k dielectrics overcoming limitations of zeolite films. J. Am. Chem. Soc. 2008, 130, 17528-17536.  doi: 10.1021/ja8066572

  • 加载中
    1. [1]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    2. [2]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    3. [3]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    6. [6]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    7. [7]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    8. [8]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    9. [9]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    10. [10]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    11. [11]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    12. [12]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    13. [13]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    14. [14]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    15. [15]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    16. [16]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    17. [17]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    18. [18]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    19. [19]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    20. [20]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

Metrics
  • PDF Downloads(0)
  • Abstract views(844)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return