Citation:
Man-Man Fang, Jie Yang, Zhen Li. Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer[J]. Chinese Journal of Polymer Science,
;2019, 37(4): 383-393.
doi:
10.1007/s10118-019-2218-z
-
Room temperature phosphorescence (RTP) has drawn increasing attention for its great potential in practical applications. Polymers with large molecular weights and long chains tend to form coil, which can endow them with a high degree of possible rigidity and result in the much restricted non-radiative transition. Also, the intertwined structure of polymers could isolate the oxygen and humidity effectively, thus reducing the consumption of triplet excitons. In consideration of these points, organic polymers would be another kind of ideal platform to realize RTP effect. This short review summarized the design strategy of the purely organic room temperature phosphorescence polymers, mainly focusing on the building forms of polymers and the corresponding inherent mechanisms, and also gives some outlooks on the further exploration of this field at the end of this paper.
-
-
-
[1]
Mukherjee, S.; Thilagar, P. Recent advances in purely organic phosphorescent materials. Chem. Commun. 2015, 51, 10988-11003. doi: 10.1039/C5CC03114A
-
[2]
Xu, S.; Chen, R.; Zheng, C.; Huang, W. Excited state modulation for organic afterglow: Materials and applications. Adv. Mater. 2016, 28, 9920-9940. doi: 10.1002/adma.201602604
-
[3]
Hirata, S.; Recent advances in materials with room temperature phosphorescence: Photophysics for triplet exciton stabilization. Adv. Optical Mater. 2017, 1700116. doi: 10.1002/adom.201700116
-
[4]
Kabe, R.; Notsuka, N.; Yoshida, K. Adachi, C. Afterglow organic light-emitting diode. Adv. Mater. 2016, 28, 655-660. doi: 10.1002/adma.201504321
-
[5]
Yang, J. Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, J.; Li. J.; Peng, Q.; Pu, K.; Li, Z. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 2018, 9, 840. doi: 10.1038/s41467-018-03236-6
-
[6]
Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z. Elucidating the excited state of mechanoluminescence in organic luminogens with room-temperature phosphorescence. Angew. Chem. Int. Ed. 2017, 56, 15299-15303. doi: 10.1002/anie.201708119
-
[7]
Chai, Z.; Wang, C.; Wang, J.; Liu, F.; Xie, Y.; Zhang, Y.; Li, J.; Li, Q.; Li, Z. Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behavior and the molecular packing, and the potential related applications. Chem. Sci. 2017, 8, 8336-8344. doi: 10.1039/C7SC04098A
-
[8]
Xie, Y.; Ge, Y.; Peng, Q.; Li, C.; Li, Q.; Li, Z. How the molecular packing affects the room temperature phosphorescence in pure organic compounds: Ingenious molecular design, detailed crystal analysis, and rational theoretical calculations. Adv. Mater. 2017, 1606829. doi: 10.1002/adma.201606829
-
[9]
Xie, Y.; Li, Z. Thermally activated delayed fluorescent polymers. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 575-584. doi: 10.1002/pola.28448
-
[10]
Fang, X.; Yan, D. White-light emission and tunable room temperature phosphorescence of dibenzothiophene. Sci. China Chem. 2018, 61,397-401. doi: 10.1007/s11426-017-9183-9
-
[11]
Li, K.; Zhao, L.; Gong, Y.; Yuan, W.; Zhang, Y. A gelable pure organic luminogen with fluorescence-phosphorescence dual emission. Sci. China Chem. 2017, 60, 806-812. doi: 10.1007/s11426-016-0460-8
-
[12]
Mutlu, S.; Watanab, K.; Takahara, S.; Arsu, N. Thioxanthone-anthracene‐9‐carboxylic acid as radical photoinitiator in the presence of atmospheric air. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1878-1883. doi: 10.1002/pola.29072
-
[13]
Kimura, T.; Watanabe, S.; Sawada, S.; Shibasaki, Y.; Oishi, Y. Preparation and optical properties of polyimide films linked with porphyrinato Pd(II) and Pt(II) complexes through a triazine ring and application toward oxygen sensors. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1086-1094. doi: 10.1002/pola.v55.6
-
[14]
Shimizu, M.; Kinoshita, T.; Shigitani, R.; Miyake, Y.; Tajima, K. Use of silylmethoxy groups as inducers of efficient room temperature phosphorescence from precious-metal-free organic luminophores. Mater. Chem. Front. 2018, 2, 347-354. doi: 10.1039/C7QM00524E
-
[15]
Liu, H.; Gao, Y.; Cao, J.; Li, T.; Wen, Y.; Ge, Y.; Zhang, L.; Pan, G.; Zhou, T.; Yang, B. Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: folding-induced spin-orbit coupling enhancement. Mater. Chem. Front. 2018, 2, 1853-1858. doi: 10.1039/C8QM00320C
-
[16]
Tao, S; Lu, S; Geng, Y.; Zhu, S.; Redfern, S. A. T.; Song, Y.; Feng, T.; Xu, W.; Yang, B. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials. Angew. Chem. Int. Ed. 2018, 57, 2393-2398. doi: 10.1002/anie.201712662
-
[17]
Ma, X.; Xu, C.; Wang, J.; Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem. Int. Ed. 2018, 130, 11020-11024. doi: 10.1002/ange.201803947
-
[18]
Fermi, A.; Bergamini, G.; Roy, M.; Gingras, M.; Ceroni, P. Turn-on phosphorescence by metal coordination to a multivalent terpyridine ligand: A new paradigm for luminescent sensors. J. Am. Chem. Soc. 2014, 136, 6395-6400. doi: 10.1021/ja501458s
-
[19]
Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259-3302. doi: 10.1039/C3CS60449G
-
[20]
Baroncini, M.; Bergamini G.; Ceroni, P. Rigidification or interaction-induced phosphorescence of organic molecules. Chem. Commun. 2017, 53, 2081-2093. doi: 10.1039/C6CC09288H
-
[21]
Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. AIEgen with fluorescence-phosphorescence dual mechanoluminescence at room temperature. Angew. Chem. 2017, 129, 898-902. doi: 10.1002/ange.201610453
-
[22]
Menning, S.; Krämer, M.; Coombs, B.; Rominger, F.; Beeby, A.; Dreuw, A.; Bunz, U. Twisted tethered tolanes: Unanticipated long-lived phosphorescence at 77 K. J. Am. Chem. Soc. 2013, 135, 2160-2163. doi: 10.1021/ja400416r
-
[23]
Gong, Y.; Chen, G.; Peng, Q.; Yuan, W.; Xie, Y.; Li, S.; Zhang, Y.; Tang, B. Z. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater. 2015, 27, 6195-6201. doi: 10.1002/adma.201502442
-
[24]
He, Z.; Zhao, W.; Lam, J.; Peng, Q.; Ma, H.; Liang, G.; Shuai, Z.; Tang, B.; White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 2017, 8, 416. doi: 10.1038/s41467-017-00362-5
-
[25]
Zhao, W; He, Z.; Lam, J.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Z. Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 2016, 1, 592-602, doi: 10.1016/j.chempr.2016.08.010
-
[26]
Bolton, O.; Lee, K.; Kim, H.; Lin, K.; Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 2011, 3, 205-210. doi: 10.1038/nchem.984
-
[27]
An, Z.; Zheng, C.; Tao, Y., Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W.; Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685-690. doi: 10.1038/nmat4259
-
[28]
Gan, N.; Shi, H.; An, Z.; Huang W. Recent advances in polymer-based metal-free room-temperature phosphorescent materials. Adv. Funct. Mater. 2018, 1802657. doi: 10.1002/adfm.201802657
-
[29]
Wu, W.; Tang, R.; Li, Q.; Li, Z.; Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997-4022. doi: 10.1039/C4CS00224E
-
[30]
Yuan, W.; Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 560-574. doi: 10.1002/pola.28420
-
[31]
Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W.; Zhang, Y. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 2016, 12, 6586-6592. doi: 10.1002/smll.v12.47
-
[32]
Gong, Y.; Tan, Y.; Mei, J.; Zhang, Y.; Yuan. W.; Zang, Y. Sun, J.; Tang, B. Z. Room temperature phosphorescence from natural products: Crystallization matters. Sci. China Chem. 2013, 56, 1178-1182. doi: 10.1007/s11426-013-4923-8
-
[33]
Reineke, S.; Seidler, N.; Yost, S.; Prins, F.; Tisdale, W.; Baldo, M. Highly efficient, dual state emission from an organic semiconductor. Appl. Phys. Lett. 2013, 103, 093302. doi: 10.1063/1.4819444
-
[34]
Reineke, S.; Baldo, M. Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 2014, 4, 3797. doi: 10.1038/srep03797
-
[35]
Redondo, C.; Kleine, P.; Roszeitis, K.; Achenbach, T.; Kroll, M.; Thomschke, M.; Reineke, S. Interplay of fluorescence and phosphorescence in organic biluminescent emitters. J. Phys. Chem. C 2017, 121, 14946. doi: 10.1021/acs.jpcc.7b04529
-
[36]
Mieno, H.; Kabe, R.; Notsuka, N.; Allendorf, M.; Adachi, C. Long-lived room-temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF‐8. Adv. Opt. Mater. 2016, 4, 1015-1021. doi: 10.1002/adom.201600103
-
[37]
Joshi, R.; Meitei, O. Jadhao, M.; Kumar, H.; Ghosh, S. Conformation controlled turn on-turn off phosphorescence in a metal-free biluminophore: thriving the paradox that exists for organic compounds. Phys. Chem. Chem. Phys. 2016, 18, 27910-27920. doi: 10.1039/C6CP04336D
-
[38]
Kwon, M. Lee, D.; Seo, S.; Jung, J.; Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem., Int. Ed. 2014, 53, 11177-11181. doi: 10.1002/anie.201404490
-
[39]
Su, Y. Phua, S.; Li, Y.; Zhou, X.; Jana, D.; Liu, G.; Wei, Q.; Ong, W.; Yang, C.; Zhao, Y. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv. 2018, 4, eaas9732. doi: 10.1126/sciadv.aas9732
-
[40]
Kabe, R.; Adachi, C. Organic long persistent luminescence. Nature 2017, 550, 384-387. doi: 10.1038/nature24010
-
[41]
Jinnai, K.; Kabe, R.; Adachi, C. Wide-range tuning and enhancement of organic long persistent luminescence using emitter dopants. Adv. Mater. 2018, 1800365. doi: 10.1002/adma.201800365
-
[42]
Lin, Z.; Kabe, R.; Nishimura, N.; Jinnai, K.; Adachi, C. Organic long-persistent luminescence from a flexible and transparent doped polymer. Adv. Mater. 2018, 1803713. doi: 10.1002/adma.201803713
-
[43]
Zhang, G.; Evans, R.; Campbell, K.; Fraser, C. Role of boron in the polymer chemistry and photophysical properties of difluoroboron−dibenzoylmethane polylactide. Macromolecules 2009, 42, 8627. doi: 10.1021/ma9019043
-
[44]
Samonina-Kosicka, J.; Derosa, C.; Morris, W.; Fan, Z.; Fraser, C. Dual-emissive difluoroboron naphthyl-phenyl β-diketonate polylactide materials: Effects of heavy atom placement and polymer molecular weight. Macromolecules 2014, 47, 3736. doi: 10.1021/ma5006606
-
[45]
Derosa, C.; Samonina-Kosicka, J.; Fan, Z.; Hendargo, H.; Weitzel, D.; Palmer, G.; Fraser, c. oxygen sensing difluoroboron dinaphthoylmethane polylactide. Macromolecules 2015, 48, 2967. doi: 10.1021/acs.macromol.5b00394
-
[46]
Chen, X.; Xu, C.; Wang, T.; Zhou, C.; Du, J.; Wang, Z.; Xu, H.; Xie, T.; Bi, G.; Jiang, J.; Zhang, X.; Demas, J.; Trindle, C.; Luo, Y.; Zhang, G. Versatile room-temperature-phosphorescent materials prepared from N-substituted naphthalimides: emission enhancement and chemical conjugation. Angew. Chem. Int. Ed. 2016, 55, 9872. doi: 10.1002/anie.201601252
-
[47]
Sun, X.; Wang, X.; Li, X.; Ge, J.; Zhang, Q.; Jiang, J.; Zhang, G. Polymerization-enhanced intersystem crossing: New strategy to achieve long-lived excitons. Macromol. Rapid Commun. 2015, 36, 298-303. doi: 10.1002/marc.201400529
-
[48]
Zhang, G.; Chen, J.; Payne, S.; Kooi, S.; Demas, J.; Fraser, C. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 2007, 129, 8942-8943. doi: 10.1021/ja0720255
-
[49]
DeRosa, C.; Kerr, C.; Fan, Z.; Kolpaczynska, M.; Mathew, A.; Evans, R.; Zhang, G.; Fraser, C. Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoylmethane polylactide materials. ACS Appl. Mater. Interfaces 2015, 7, 23633-23643. doi: 10.1021/acsami.5b07126
-
[50]
Zhang, T.; Chen, H.; Ma, X.; Tian, H. Amorphous 2-bromocarbazole copolymers with efficient room-temperature phosphorescent emission and applications as encryption ink. Ind. Eng. Chem. Res. 2017, 56, 3123. doi: 10.1021/acs.iecr.7b00149
-
[51]
Chen, H.; Xu, L.; Ma, X.; Tian, H. Room temperature phosphorescence of 4-bromo-1,8-naphthalic anhydride derivative-based polyacrylamide copolymer with photo-stimulated responsiveness. Polym. Chem. 2016, 7, 3989-3992. doi: 10.1039/C6PY00703A
-
[52]
Chen, H.; Yao, X.; Ma, X.; Tian, H. Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv. Opt. Mater. 2016, 4, 1397-1401. doi: 10.1002/adom.201600427
-
[53]
Ogoshi, T.; Tsuchida, H.; Kakuta, T.; Yamagishi, T.; Taema, A.; Ono, T.; Sugimoto, M.; Motohiro, M. Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state. Adv. Funct. Mater. 2018, 28, 1707369. doi: 10.1002/adfm.v28.16
-
[54]
Kanosue, K.; Ando, S. Polyimides with heavy halogens exhibiting room-temperature phosphorescence with very large Stokes shifts. ACS Macro Lett. 2016, 5, 1301-1305. doi: 10.1021/acsmacrolett.6b00642
-
[55]
Wang, T.; Zhang, X.; Deng, Y.; Sun, W.; Wang, Q.; Xu, F.; Huang, X. Dual-emissive waterborne polyurethanes prepared from naphthalimide derivative. Polymers 2017, 9, 411. doi: 10.3390/polym9090411
-
[56]
Wang, T.; Zhou, C.; Zhang, X.; Xu, D. Waterborne polyurethanes prepared from benzophenone derivatives with delayed fluorescence and room-temperature phosphorescence. Polym. Chem. 2018, 9, 1303-1308. doi: 10.1039/C7PY01995E
-
[57]
Zhou, C.; Xie, T.; Zhou, R.; Trindle, C.; Tikman, Y.; Zhang, X.; Zhang, G. Waterborne polyurethanes with tunable fluorescence and room-temperature phosphorescence. ACS Appl. Mater. Interfaces 2015, 7, 17209-17216. doi: 10.1021/acsami.5b04075
-
[58]
Chen, X.; He, Z.; Kausar, F.; Chen, G.; Zhang, Y.; Yuan, W. Aggregation-induced dual emission and unusual luminescence beyond excimer emission of poly(ethylene terephthalate). Macromolecules 2018, 51, 9035-9042. doi: 10.1021/acs.macromol.8b01743
-
[59]
Ma, X.; Xu, C; Wang, J.; Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem. Int. Ed. 2018, 57, 10854-11024. doi: 10.1002/anie.201803947
-
[60]
Kwon, M.; Yu, Y.; Coburn, C.; Phillips, A.; Chung, K.; Shanker, K.; Jung, J.; Kim, G.; Pipe, K.; Forrest, S.; Youk, J.; Gierschner, J.; Kim, J. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials. Nat. Commun. 2015, 6, 8947. doi: 10.1038/ncomms9947
-
[61]
Yu, Y.; Kwon, M.; Jung, J.; Zeng, Y.; Kim, M.; Chung, K.; Gierschner, J.; Youk, J.; Borisov, S.; Kim, J. Room-temperature-phosphorescence-based dissolved oxygen detection by core-shell polymer nanoparticles containing metal-free organic phosphors. Angew. Chem. Int. Ed. 2017, 56, 16207-16211. doi: 10.1002/anie.201708606
-
[62]
Li, Q.; Tang, Y.; Hu, W.; Li, Z. Fluorescence of nonaromatic organic systems and room temperature phosphorescence of organic luminogens: The intrinsic principle and recent progress. Small 2018, 1801560. doi: 10.1002/smll.201801560
-
[63]
Wang Y.; Bin, X.; Chen, X.; Zheng, S.; Zhang, Y.; Yuan, W. Emission and emissive mechanism of nonaromatic oxygen clusters. Macromol. Rapid Commun. 2018, 39, 1800528. doi: 10.1002/marc.v39.21
-
[64]
Dou, X.; Zhou, Q.; Chen, X.; Tan, Y.; He, X.; Lu, P.; Sui, K.; Tang, B.; Zhang, Y.; Yuan, W. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules 2018, 19, 2014-2022. doi: 10.1021/acs.biomac.8b00123
-
[65]
Zhou, Q.; Wang, Z.; Dou, X.; Wang, Y.; Liu, S.; Zhang, Y.; Yuan, W. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front., 2018, DOI: 10.1039/c8qm00528a. doi: 10.1039/c8qm00528a
-
[66]
Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan. W.; Zhang, Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 2018, 61, 351-359. doi: 10.1007/s11426-017-9114-4
-
[67]
Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y.; Peng, Q.; Li, Q.; Li, Z. Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Mater. Chem. Front. 2018, 2, 2124-2129. doi: 10.1039/C8QM00396C
-
[1]
-
-
-
[1]
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
-
[2]
Dian-Xue Ma , Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391
-
[3]
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
-
[4]
Jiayin Zhou , Depeng Liu , Longqiang Li , Min Qi , Guangqiang Yin , Tao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929
-
[5]
Jianmei Guo , Yupeng Zhao , Lei Ma , Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335
-
[6]
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
-
[7]
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
-
[8]
Hanying Li , Wee-Liat Ong . “Super-heterojunctioned” thermoelectric polymers. Chinese Chemical Letters, 2025, 36(2): 110523-. doi: 10.1016/j.cclet.2024.110523
-
[9]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[10]
Shuai Zhu , Mingjie Chen , Haichao Shen , Hanming Ding , Wenbo Li , Junliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879
-
[11]
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
-
[12]
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
-
[13]
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
-
[14]
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
-
[15]
Zhenzhong MEI , Hongyu WANG , Xiuqi KANG , Yongliang SHAO , Jinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081
-
[16]
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
-
[17]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[18]
Xiumei LI , Linlin LI , Bo LIU , Yaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273
-
[19]
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
-
[20]
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(730)
- HTML views(2)