Citation: Man-Man Fang, Jie Yang, Zhen Li. Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 383-393. doi: 10.1007/s10118-019-2218-z shu

Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer

  • Corresponding author: Zhen Li, 
  • Received Date: 26 November 2018
    Revised Date: 24 December 2018
    Available Online: 24 January 2019

  • Room temperature phosphorescence (RTP) has drawn increasing attention for its great potential in practical applications. Polymers with large molecular weights and long chains tend to form coil, which can endow them with a high degree of possible rigidity and result in the much restricted non-radiative transition. Also, the intertwined structure of polymers could isolate the oxygen and humidity effectively, thus reducing the consumption of triplet excitons. In consideration of these points, organic polymers would be another kind of ideal platform to realize RTP effect. This short review summarized the design strategy of the purely organic room temperature phosphorescence polymers, mainly focusing on the building forms of polymers and the corresponding inherent mechanisms, and also gives some outlooks on the further exploration of this field at the end of this paper.
  • 加载中
    1. [1]

      Mukherjee, S.; Thilagar, P. Recent advances in purely organic phosphorescent materials. Chem. Commun. 2015, 51, 10988-11003.  doi: 10.1039/C5CC03114A

    2. [2]

      Xu, S.; Chen, R.; Zheng, C.; Huang, W. Excited state modulation for organic afterglow: Materials and applications. Adv. Mater. 2016, 28, 9920-9940.  doi: 10.1002/adma.201602604

    3. [3]

      Hirata, S.; Recent advances in materials with room temperature phosphorescence: Photophysics for triplet exciton stabilization. Adv. Optical Mater. 2017, 1700116.  doi: 10.1002/adom.201700116

    4. [4]

      Kabe, R.; Notsuka, N.; Yoshida, K. Adachi, C. Afterglow organic light-emitting diode. Adv. Mater. 2016, 28, 655-660.  doi: 10.1002/adma.201504321

    5. [5]

      Yang, J. Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, J.; Li. J.; Peng, Q.; Pu, K.; Li, Z. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 2018, 9, 840.  doi: 10.1038/s41467-018-03236-6

    6. [6]

      Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z. Elucidating the excited state of mechanoluminescence in organic luminogens with room-temperature phosphorescence. Angew. Chem. Int. Ed. 2017, 56, 15299-15303.  doi: 10.1002/anie.201708119

    7. [7]

      Chai, Z.; Wang, C.; Wang, J.; Liu, F.; Xie, Y.; Zhang, Y.; Li, J.; Li, Q.; Li, Z. Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behavior and the molecular packing, and the potential related applications. Chem. Sci. 2017, 8, 8336-8344.  doi: 10.1039/C7SC04098A

    8. [8]

      Xie, Y.; Ge, Y.; Peng, Q.; Li, C.; Li, Q.; Li, Z. How the molecular packing affects the room temperature phosphorescence in pure organic compounds: Ingenious molecular design, detailed crystal analysis, and rational theoretical calculations. Adv. Mater. 2017, 1606829.  doi: 10.1002/adma.201606829

    9. [9]

      Xie, Y.; Li, Z. Thermally activated delayed fluorescent polymers. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 575-584.  doi: 10.1002/pola.28448

    10. [10]

      Fang, X.; Yan, D. White-light emission and tunable room temperature phosphorescence of dibenzothiophene. Sci. China Chem. 2018, 61,397-401.  doi: 10.1007/s11426-017-9183-9

    11. [11]

      Li, K.; Zhao, L.; Gong, Y.; Yuan, W.; Zhang, Y. A gelable pure organic luminogen with fluorescence-phosphorescence dual emission. Sci. China Chem. 2017, 60, 806-812.  doi: 10.1007/s11426-016-0460-8

    12. [12]

      Mutlu, S.; Watanab, K.; Takahara, S.; Arsu, N. Thioxanthone-anthracene‐9‐carboxylic acid as radical photoinitiator in the presence of atmospheric air. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1878-1883.  doi: 10.1002/pola.29072

    13. [13]

      Kimura, T.; Watanabe, S.; Sawada, S.; Shibasaki, Y.; Oishi, Y. Preparation and optical properties of polyimide films linked with porphyrinato Pd(II) and Pt(II) complexes through a triazine ring and application toward oxygen sensors. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1086-1094.  doi: 10.1002/pola.v55.6

    14. [14]

      Shimizu, M.; Kinoshita, T.; Shigitani, R.; Miyake, Y.; Tajima, K. Use of silylmethoxy groups as inducers of efficient room temperature phosphorescence from precious-metal-free organic luminophores. Mater. Chem. Front. 2018, 2, 347-354.  doi: 10.1039/C7QM00524E

    15. [15]

      Liu, H.; Gao, Y.; Cao, J.; Li, T.; Wen, Y.; Ge, Y.; Zhang, L.; Pan, G.; Zhou, T.; Yang, B. Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: folding-induced spin-orbit coupling enhancement. Mater. Chem. Front. 2018, 2, 1853-1858.  doi: 10.1039/C8QM00320C

    16. [16]

      Tao, S; Lu, S; Geng, Y.; Zhu, S.; Redfern, S. A. T.; Song, Y.; Feng, T.; Xu, W.; Yang, B. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials. Angew. Chem. Int. Ed. 2018, 57, 2393-2398.  doi: 10.1002/anie.201712662

    17. [17]

      Ma, X.; Xu, C.; Wang, J.; Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem. Int. Ed. 2018, 130, 11020-11024.  doi: 10.1002/ange.201803947

    18. [18]

      Fermi, A.; Bergamini, G.; Roy, M.; Gingras, M.; Ceroni, P. Turn-on phosphorescence by metal coordination to a multivalent terpyridine ligand: A new paradigm for luminescent sensors. J. Am. Chem. Soc. 2014, 136, 6395-6400.  doi: 10.1021/ja501458s

    19. [19]

      Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259-3302.  doi: 10.1039/C3CS60449G

    20. [20]

      Baroncini, M.; Bergamini G.; Ceroni, P. Rigidification or interaction-induced phosphorescence of organic molecules. Chem. Commun. 2017, 53, 2081-2093.  doi: 10.1039/C6CC09288H

    21. [21]

      Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. AIEgen with fluorescence-phosphorescence dual mechanoluminescence at room temperature. Angew. Chem. 2017, 129, 898-902.  doi: 10.1002/ange.201610453

    22. [22]

      Menning, S.; Krämer, M.; Coombs, B.; Rominger, F.; Beeby, A.; Dreuw, A.; Bunz, U. Twisted tethered tolanes: Unanticipated long-lived phosphorescence at 77 K. J. Am. Chem. Soc. 2013, 135, 2160-2163.  doi: 10.1021/ja400416r

    23. [23]

      Gong, Y.; Chen, G.; Peng, Q.; Yuan, W.; Xie, Y.; Li, S.; Zhang, Y.; Tang, B. Z. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater. 2015, 27, 6195-6201.  doi: 10.1002/adma.201502442

    24. [24]

      He, Z.; Zhao, W.; Lam, J.; Peng, Q.; Ma, H.; Liang, G.; Shuai, Z.; Tang, B.; White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 2017, 8, 416.  doi: 10.1038/s41467-017-00362-5

    25. [25]

      Zhao, W; He, Z.; Lam, J.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Z. Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 2016, 1, 592-602,  doi: 10.1016/j.chempr.2016.08.010

    26. [26]

      Bolton, O.; Lee, K.; Kim, H.; Lin, K.; Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 2011, 3, 205-210.  doi: 10.1038/nchem.984

    27. [27]

      An, Z.; Zheng, C.; Tao, Y., Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W.; Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685-690.  doi: 10.1038/nmat4259

    28. [28]

      Gan, N.; Shi, H.; An, Z.; Huang W. Recent advances in polymer-based metal-free room-temperature phosphorescent materials. Adv. Funct. Mater. 2018, 1802657.  doi: 10.1002/adfm.201802657

    29. [29]

      Wu, W.; Tang, R.; Li, Q.; Li, Z.; Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997-4022.  doi: 10.1039/C4CS00224E

    30. [30]

      Yuan, W.; Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 560-574.  doi: 10.1002/pola.28420

    31. [31]

      Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W.; Zhang, Y. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 2016, 12, 6586-6592.  doi: 10.1002/smll.v12.47

    32. [32]

      Gong, Y.; Tan, Y.; Mei, J.; Zhang, Y.; Yuan. W.; Zang, Y. Sun, J.; Tang, B. Z. Room temperature phosphorescence from natural products: Crystallization matters. Sci. China Chem. 2013, 56, 1178-1182.  doi: 10.1007/s11426-013-4923-8

    33. [33]

      Reineke, S.; Seidler, N.; Yost, S.; Prins, F.; Tisdale, W.; Baldo, M. Highly efficient, dual state emission from an organic semiconductor. Appl. Phys. Lett. 2013, 103, 093302.  doi: 10.1063/1.4819444

    34. [34]

      Reineke, S.; Baldo, M. Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 2014, 4, 3797.  doi: 10.1038/srep03797

    35. [35]

      Redondo, C.; Kleine, P.; Roszeitis, K.; Achenbach, T.; Kroll, M.; Thomschke, M.; Reineke, S. Interplay of fluorescence and phosphorescence in organic biluminescent emitters. J. Phys. Chem. C 2017, 121, 14946.  doi: 10.1021/acs.jpcc.7b04529

    36. [36]

      Mieno, H.; Kabe, R.; Notsuka, N.; Allendorf, M.; Adachi, C. Long-lived room-temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF‐8. Adv. Opt. Mater. 2016, 4, 1015-1021.  doi: 10.1002/adom.201600103

    37. [37]

      Joshi, R.; Meitei, O. Jadhao, M.; Kumar, H.; Ghosh, S. Conformation controlled turn on-turn off phosphorescence in a metal-free biluminophore: thriving the paradox that exists for organic compounds. Phys. Chem. Chem. Phys. 2016, 18, 27910-27920.  doi: 10.1039/C6CP04336D

    38. [38]

      Kwon, M. Lee, D.; Seo, S.; Jung, J.; Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem., Int. Ed. 2014, 53, 11177-11181.  doi: 10.1002/anie.201404490

    39. [39]

      Su, Y. Phua, S.; Li, Y.; Zhou, X.; Jana, D.; Liu, G.; Wei, Q.; Ong, W.; Yang, C.; Zhao, Y. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv. 2018, 4, eaas9732.  doi: 10.1126/sciadv.aas9732

    40. [40]

      Kabe, R.; Adachi, C. Organic long persistent luminescence. Nature 2017, 550, 384-387.  doi: 10.1038/nature24010

    41. [41]

      Jinnai, K.; Kabe, R.; Adachi, C. Wide-range tuning and enhancement of organic long persistent luminescence using emitter dopants. Adv. Mater. 2018, 1800365.  doi: 10.1002/adma.201800365

    42. [42]

      Lin, Z.; Kabe, R.; Nishimura, N.; Jinnai, K.; Adachi, C. Organic long-persistent luminescence from a flexible and transparent doped polymer. Adv. Mater. 2018, 1803713.  doi: 10.1002/adma.201803713

    43. [43]

      Zhang, G.; Evans, R.; Campbell, K.; Fraser, C. Role of boron in the polymer chemistry and photophysical properties of difluoroboron−dibenzoylmethane polylactide. Macromolecules 2009, 42, 8627.  doi: 10.1021/ma9019043

    44. [44]

      Samonina-Kosicka, J.; Derosa, C.; Morris, W.; Fan, Z.; Fraser, C. Dual-emissive difluoroboron naphthyl-phenyl β-diketonate polylactide materials: Effects of heavy atom placement and polymer molecular weight. Macromolecules 2014, 47, 3736.  doi: 10.1021/ma5006606

    45. [45]

      Derosa, C.; Samonina-Kosicka, J.; Fan, Z.; Hendargo, H.; Weitzel, D.; Palmer, G.; Fraser, c. oxygen sensing difluoroboron dinaphthoylmethane polylactide. Macromolecules 2015, 48, 2967.  doi: 10.1021/acs.macromol.5b00394

    46. [46]

      Chen, X.; Xu, C.; Wang, T.; Zhou, C.; Du, J.; Wang, Z.; Xu, H.; Xie, T.; Bi, G.; Jiang, J.; Zhang, X.; Demas, J.; Trindle, C.; Luo, Y.; Zhang, G. Versatile room-temperature-phosphorescent materials prepared from N-substituted naphthalimides: emission enhancement and chemical conjugation. Angew. Chem. Int. Ed. 2016, 55, 9872.  doi: 10.1002/anie.201601252

    47. [47]

      Sun, X.; Wang, X.; Li, X.; Ge, J.; Zhang, Q.; Jiang, J.; Zhang, G. Polymerization-enhanced intersystem crossing: New strategy to achieve long-lived excitons. Macromol. Rapid Commun. 2015, 36, 298-303.  doi: 10.1002/marc.201400529

    48. [48]

      Zhang, G.; Chen, J.; Payne, S.; Kooi, S.; Demas, J.; Fraser, C. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 2007, 129, 8942-8943.  doi: 10.1021/ja0720255

    49. [49]

      DeRosa, C.; Kerr, C.; Fan, Z.; Kolpaczynska, M.; Mathew, A.; Evans, R.; Zhang, G.; Fraser, C. Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoylmethane polylactide materials. ACS Appl. Mater. Interfaces 2015, 7, 23633-23643.  doi: 10.1021/acsami.5b07126

    50. [50]

      Zhang, T.; Chen, H.; Ma, X.; Tian, H. Amorphous 2-bromocarbazole copolymers with efficient room-temperature phosphorescent emission and applications as encryption ink. Ind. Eng. Chem. Res. 2017, 56, 3123.  doi: 10.1021/acs.iecr.7b00149

    51. [51]

      Chen, H.; Xu, L.; Ma, X.; Tian, H. Room temperature phosphorescence of 4-bromo-1,8-naphthalic anhydride derivative-based polyacrylamide copolymer with photo-stimulated responsiveness. Polym. Chem. 2016, 7, 3989-3992.  doi: 10.1039/C6PY00703A

    52. [52]

      Chen, H.; Yao, X.; Ma, X.; Tian, H. Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv. Opt. Mater. 2016, 4, 1397-1401.  doi: 10.1002/adom.201600427

    53. [53]

      Ogoshi, T.; Tsuchida, H.; Kakuta, T.; Yamagishi, T.; Taema, A.; Ono, T.; Sugimoto, M.; Motohiro, M. Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state. Adv. Funct. Mater. 2018, 28, 1707369.  doi: 10.1002/adfm.v28.16

    54. [54]

      Kanosue, K.; Ando, S. Polyimides with heavy halogens exhibiting room-temperature phosphorescence with very large Stokes shifts. ACS Macro Lett. 2016, 5, 1301-1305.  doi: 10.1021/acsmacrolett.6b00642

    55. [55]

      Wang, T.; Zhang, X.; Deng, Y.; Sun, W.; Wang, Q.; Xu, F.; Huang, X. Dual-emissive waterborne polyurethanes prepared from naphthalimide derivative. Polymers 2017, 9, 411.  doi: 10.3390/polym9090411

    56. [56]

      Wang, T.; Zhou, C.; Zhang, X.; Xu, D. Waterborne polyurethanes prepared from benzophenone derivatives with delayed fluorescence and room-temperature phosphorescence. Polym. Chem. 2018, 9, 1303-1308.  doi: 10.1039/C7PY01995E

    57. [57]

      Zhou, C.; Xie, T.; Zhou, R.; Trindle, C.; Tikman, Y.; Zhang, X.; Zhang, G. Waterborne polyurethanes with tunable fluorescence and room-temperature phosphorescence. ACS Appl. Mater. Interfaces 2015, 7, 17209-17216.  doi: 10.1021/acsami.5b04075

    58. [58]

      Chen, X.; He, Z.; Kausar, F.; Chen, G.; Zhang, Y.; Yuan, W. Aggregation-induced dual emission and unusual luminescence beyond excimer emission of poly(ethylene terephthalate). Macromolecules 2018, 51, 9035-9042.  doi: 10.1021/acs.macromol.8b01743

    59. [59]

      Ma, X.; Xu, C; Wang, J.; Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem. Int. Ed. 2018, 57, 10854-11024.  doi: 10.1002/anie.201803947

    60. [60]

      Kwon, M.; Yu, Y.; Coburn, C.; Phillips, A.; Chung, K.; Shanker, K.; Jung, J.; Kim, G.; Pipe, K.; Forrest, S.; Youk, J.; Gierschner, J.; Kim, J. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials. Nat. Commun. 2015, 6, 8947.  doi: 10.1038/ncomms9947

    61. [61]

      Yu, Y.; Kwon, M.; Jung, J.; Zeng, Y.; Kim, M.; Chung, K.; Gierschner, J.; Youk, J.; Borisov, S.; Kim, J. Room-temperature-phosphorescence-based dissolved oxygen detection by core-shell polymer nanoparticles containing metal-free organic phosphors. Angew. Chem. Int. Ed. 2017, 56, 16207-16211.  doi: 10.1002/anie.201708606

    62. [62]

      Li, Q.; Tang, Y.; Hu, W.; Li, Z. Fluorescence of nonaromatic organic systems and room temperature phosphorescence of organic luminogens: The intrinsic principle and recent progress. Small 2018, 1801560.  doi: 10.1002/smll.201801560

    63. [63]

      Wang Y.; Bin, X.; Chen, X.; Zheng, S.; Zhang, Y.; Yuan, W. Emission and emissive mechanism of nonaromatic oxygen clusters. Macromol. Rapid Commun. 2018, 39, 1800528.  doi: 10.1002/marc.v39.21

    64. [64]

      Dou, X.; Zhou, Q.; Chen, X.; Tan, Y.; He, X.; Lu, P.; Sui, K.; Tang, B.; Zhang, Y.; Yuan, W. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules 2018, 19, 2014-2022.  doi: 10.1021/acs.biomac.8b00123

    65. [65]

      Zhou, Q.; Wang, Z.; Dou, X.; Wang, Y.; Liu, S.; Zhang, Y.; Yuan, W. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front., 2018, DOI: 10.1039/c8qm00528a.  doi: 10.1039/c8qm00528a

    66. [66]

      Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan. W.; Zhang, Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 2018, 61, 351-359.  doi: 10.1007/s11426-017-9114-4

    67. [67]

      Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y.; Peng, Q.; Li, Q.; Li, Z. Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Mater. Chem. Front. 2018, 2, 2124-2129.  doi: 10.1039/C8QM00396C

  • 加载中
    1. [1]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    2. [2]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    3. [3]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    4. [4]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    5. [5]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    6. [6]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    7. [7]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    8. [8]

      Hanying LiWee-Liat Ong . “Super-heterojunctioned” thermoelectric polymers. Chinese Chemical Letters, 2025, 36(2): 110523-. doi: 10.1016/j.cclet.2024.110523

    9. [9]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    10. [10]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    11. [11]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    12. [12]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    15. [15]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    16. [16]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    17. [17]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    18. [18]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    19. [19]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    20. [20]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

Metrics
  • PDF Downloads(0)
  • Abstract views(730)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return