Citation: Shi-Yuan Zhou, Hai-Bo Wan, Feng Zhou, Pei-Yang Gu, Qing-Feng Xu, Jian-Mei Lu. AIEgens-lightened Functional Polymers: Synthesis, Properties and Applications[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 302-326. doi: 10.1007/s10118-019-2217-0 shu

AIEgens-lightened Functional Polymers: Synthesis, Properties and Applications

  • Recently, polymers with aggregation-induced emission (AIE) effects have attracted significant attention due to their broad applications in luminescence sensors, stimuli responsive materials, electroluminescence devices, etc. In this review, we summarize recent advances concerning AIE polymers. Four types of AIE polymers including end-functionalized polymers, side-chain polymers, main-chain polymers, and other polymers according to the location of AIEgens, are described. Their synthetic preparation, optical property, AIE effects, and applications are also illustrated in this review.
  • 加载中
    1. [1]

      Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W.; Wang, Z.; Liu, Y.; Kwok, H. S.; Ma, Y.; Tang, B. Z. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state. Adv. Mater. 2010, 22, 2159-63.  doi: 10.1002/adma.v22:19

    2. [2]

      Zhao, N.; Lam, J. W.; Sung, H. H.; Su, H. M.; Williams, I. D.; Wong, K. S.; Tang, B. Z. Effect of the counterion on light emission: a displacement strategy to change the emission behaviour from aggregation-caused quenching to aggregation-induced emission and to construct sensitive fluorescent sensors for Hg2+ detection. Chemistry. 2014, 20, 133-8.  doi: 10.1002/chem.201303251

    3. [3]

      Moorthy, j. N.; Natarajan, P.; Vekatakrishnan, P.; Huang, D.; Chow, T. J. Steric ingibition of π-stacking: 1,3,6,8-tetraarylpyrenes as efficient blue emitters in organic light emitting diodes (OLEDs). Org. lett. 2007, 9, 5215-5218.  doi: 10.1021/ol7023136

    4. [4]

      Chiang, C. L.; Tseng, S. M.; Chen, C. T.; Hsu, C. P.; Shu, C. F. Influence of molecular dipoles on the photoluminescence and electroluminescence of dipolar spirobifluorenes. Adv. Funct. Mater. 2008, 18, 248-257.  doi: 10.1002/(ISSN)1616-3028

    5. [5]

      Wang, J.; Zhao, Y.; Dou, C.; Sun, H.; Xu, P.; Ye, K.; Zhang, J.; Jiang, S.; Li, F.; Wang, Y. Alkyl and dendron substituted quinacridones: Synthesis, structures, and luminescent properties. J. Phys. Chem. B 2007, 111, 5082-5089.  doi: 10.1021/jp068646m

    6. [6]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Tang, B. Z.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740-1741.

    7. [7]

      Zhao, Z.; He, B.; Tang, B. Z. Aggregation-induced emission of siloles. Chem. Sci. 2015, 6, 5347-5365.  doi: 10.1039/C5SC01946J

    8. [8]

      Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429-5479.  doi: 10.1002/adma.201401356

    9. [9]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.  doi: 10.1039/c1cs15113d

    10. [10]

      Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. ACC. Chem. Res. 2013, 46, 2441.  doi: 10.1021/ar3003464

    11. [11]

      Yeh, H. C.; Wu, W. C.; Wen, Y. S.; Dai, D. C.; Wang, J. K.; Chen, C. T. Derivative of α,β-decyanostilbene: convenient precursor for the synthesis of dephenylmaleimide compounds, E-Z isomerization,crystal structure, and solid-state fluorescence. J. Org. Chem. 2004, 69, 6455-6462.  doi: 10.1021/jo049512c

    12. [12]

      Liu, Y.; Tao, X.; Wang, F.; Dang, X.; Zou, D.; Ren, Y.; Jiang, M. Aggregation-induced emissions of fluorenonearylamine derivatives: a new kind of materials for nondoped red organic light-emitting diodes. J. Phys. Chem. C 2008, 112, 3975-3981.  doi: 10.1021/jp7117373

    13. [13]

      Yang, Z.; Li, L.; Sun, Z.; Ming, T.; Li, G.; Wang, J.; Yu, J. C. Direct encoding of silica submicrospheres with cadmium telluride nanocrystals. J. Mater. Chem. 2009, 19, 7002-7010.  doi: 10.1039/b908628e

    14. [14]

      Hu, R.; Lager, E.; Aguilar-Aguilar, A.; Liu, j.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Zhong, Y.; Wong, K. S.; Pena-Cabrera, E.; Tang, B. Z. Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. J. Phys. Chem. C 2009, 113.

    15. [15]

      An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc. 2002, 124, 14410-14415.  doi: 10.1021/ja0269082

    16. [16]

      He, J.; Xu, B.; Chen, F.; Xia, H.; Li, K.; Ye, L.; Tian, W. Aggregation-induced emission in the crystals of 9,10-distyrylanthracene derivatives: the essential role of restricted intramolecular torsion. J. Phys. Chem. C 2009, 113, 9892-9899.  doi: 10.1021/jp900205k

    17. [17]

      Yu, G.; Yin, S.; Liu, Y.; Chen, J.; Xu, X.; Sun, X.; Ma, D.; Zhan, X.; Peng, Q.; Shuai, Z.; Tang, B. Z.; Zhu, D.; Fang, W.; Luo, Y. Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5,-tetraphenylsiloles. J. Am. Chem. Soc. 2005, 127, 6335-6346.  doi: 10.1021/ja044628b

    18. [18]

      Dong, Y.; Lam, J. W. Y.; Qin, A.; Liu, J.; Li, Z.; Tang, B. Z.; Sun, J.; Kwok, H. S. Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Appl. Phys. Lett. 2007, 91, 011111.  doi: 10.1063/1.2753723

    19. [19]

      Yin, S.; Peng, Q.; Shuai, Z.; Fang, W.; Wang, Y.-H.; Luo, Y. Aggregation-enhanced luminescence and vibronic coupling of silole molecules from first principles. Phys. Rev. B. 2006, 73.

    20. [20]

      Zhang, L. H.; Jiang, T.; Wu, L. B.; Wan, J. H.; Chen, C. H.; Pei, Y. B.; Lu, H.; Deng, Y.; Bian, G. F.; Qiu, H. Y.; Lai, G. Q. 2,3,4,5-Tetraphenylsilole-based conjugated polymers: synthesis, optical properties, and as sensors for explosive compounds. Chem. Asian. J. 2012, 7, 1583-1593.  doi: 10.1002/asia.201200070

    21. [21]

      Zhao, Z.; Wang, Z.; Lu, P.; Chan, C. Y.; Liu, D.; Lam, J. W.; Sung, H. H.; Williams, I. D.; Ma, Y.; Tang, B. Z. Structural modulation of solid-state emission of 2,5-bis(trialkylsilylethynyl)-3,4-diphenylsiloles. Angew. Chem. 2009, 48, 7608-7611.  doi: 10.1002/anie.v48:41

    22. [22]

      Li, J.; Liu, J.; Lam, J. W. Y.; Tang, B. Z. Poly(arylene ynonylene) with an aggregation-enhanced emission characteristic: a fluorescent sensor for both hydrazine and explosive detection. RSC. Adv. 2013, 3, 8193-8196.  doi: 10.1039/c3ra40867a

    23. [23]

      Hu, R.; Lam, J. W. Y.; Liu, J.; Sung, H. H. Y.; Williams, I. D.; Yue, Z.; Wong, K. S.; Yuen, M. M. F.; Tang, B. Z. Hyperbranched conjugated poly(tetraphenylethene): synthesis, aggregation-induced emission, fluorescent photopatterning, optical limiting and explosive detection. Polym. Chem. 2012, 3, 1481-1489.  doi: 10.1039/c2py20057k

    24. [24]

      Xu, B.; Wu, X.; Li, H.; Tong, H.; Wang, L. Selective detection of tnt and picric acid by conjugated polymer film sensors with donor-acceptor architecture. Macromolecules. 2011, 44, 5089-5092.  doi: 10.1021/ma201003f

    25. [25]

      Lu, H.; Su, F.; Mei, Q.; Zhou, X.; Tian, Y.; Tian, W.; Johnson, R. H.; Meldrum, D. R. A series of poly[N-(2-hydroxypropyl)methacrylamide] copolymers with anthracene-derived fluorophores showing aggregation-induced emission properties for bioimaging. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 890-899.  doi: 10.1002/pola.v50.5

    26. [26]

      He, F.; Xu, H.; Yang, B.; Duan, Y.; Tian, L. L.; Huang, K. K.; Ma, Y. G.; Liu, S. Y.; Feng, S. H.; Shen, J. C. Oligomeric phenylenevinylene with cross dipole arrangement and amorphous morphology: enhanced solid-state luminescence efficiency and electroluminescence performance. Adv. Mater. 2005, 17, 2710-2714.  doi: 10.1002/(ISSN)1521-4095

    27. [27]

      Chen, Y.; Lam, J. W. Y.; Kwok, R. T. K.; Liu, B.; Tang, B. Z. Aggregation-induced emission: fundamental understanding and future developments. Mater. Horiz. 2018.  doi: 10.1039/C8MH01331D

    28. [28]

      Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, 4332-53.

    29. [29]

      Shimizu, M.; Takeda, Y.; Higashi, M.; Hiyama, T. 1,4-Bis(alkenyl)-2,5-dipiperidinobenzenes: minimal fluorophores exhibiting highly efficient emission in the solid state. Angew. Chem. 2009, 48, 3653-6.  doi: 10.1002/anie.v48:20

    30. [30]

      Liu, J.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission of silole molecules and polymers : Fundamental and applications. J. Inorg. Organomet. Polym. 2009, 19, 249-285.  doi: 10.1007/s10904-009-9282-8

    31. [31]

      Qin, A.; Lam, J. W. Y.; Tang, B. Z. Luminogenic polymers with aggregation-induced emission characteristics. Prog. Polym. Sci. 2012, 37, 182-209.  doi: 10.1016/j.progpolymsci.2011.08.002

    32. [32]

      Hu, R.; Lam, J. W. Y.; Tang, B. Z. Recent progress in the development of new acetylenic polymers. Macromol. Chem. Phys. 2013, 214, 175-187.  doi: 10.1002/macp.v214.2

    33. [33]

      Qin, A.; Lam, J. W.; Tang, B. Z. Click polymerization. Chem. Soc. Rev. 2010, 39, 2522-44.  doi: 10.1039/b909064a

    34. [34]

      Gu, P. Y.; Lu, C. J.; Ye, F. L.; Ge, J. F.; Xu, Q. F.; Hu, Z. J.; Li, N. J.; Lu, J. M. Initiator-lightened polymers: preparation of end-functionalized polymers by ATRP and their intramolecular charge transfer and aggregation -induced emission. Chem. Commun. 2012, 48, 10234-6.  doi: 10.1039/c2cc35266d

    35. [35]

      Gu, P. Y.; Zhang, Y. H.; Chen, D. Y.; Lu, C. J.; Zhou, F.; Xu, Q. F.; Lu, J. M. Tuning the fluorescence of aggregates for end-functionalized polymers through varying polymer chains with different polarities. RSC Adv. 2015, 5, 8167-8174.  doi: 10.1039/C4RA14314K

    36. [36]

      Bao, Y.; Guegain, E.; Nicolas, V.; Nicolas, J. Fluorescent polymer prodrug nanoparticles with aggregation-induced emission (AIE) properties from nitroxide-mediated polymerization. Chem. Commun. 2017, 53, 4489-4492.  doi: 10.1039/C6CC09052D

    37. [37]

      Jia, W.; Yang, P.; Li, J.; Yin, Z.; Kong, L.; Lu, H.; Ge, Z.; Wu, Y.; Hao, X.; Yang, J. Synthesis and characterization of a novel cyanostilbene derivative and its initiated polymers: aggregation-induced emission enhancement behaviors and light-emitting diode applications. Polym. Chem. 2014, 5, 2282-2292.  doi: 10.1039/c3py01550e

    38. [38]

      Li, W.; Huang, D.; Wang, J.; Shen, W.; Chen, L.; Yang, S.; Zhu, M.; Tang, B.; Liang, G.; Xu, Z. A novel stimuli-responsive fluorescent elastomer based on an AIE mechanism. Polym. Chem. 2015, 6, 8194-8202.  doi: 10.1039/C5PY01273B

    39. [39]

      Liow, S. S.; Zhou, H.; Sugiarto, S.; Guo, S.; Chalasani, M. L.; Verma, N. K.; Xu, J.; Loh, X. J. Highly efficient supramolecular aggregation-induced emission-active pseudorotaxane luminogen for functional bioimaging. Biomacromolecules 2017, 18, 886-897.  doi: 10.1021/acs.biomac.6b01777

    40. [40]

      Zhang, Y. H.; Gu, P. Y.; Zhou, J. B.; Xu, Y. J.; Liu, W.; Gu, Q. F.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Lu, J. M. Preparation of 4-dicyanomethylene-2,6-distyryl-4H-pyran derivatives, their functional polystyrenes and study of their different aggregation induced emission behaviors. J. Mater. Chem. C 2014, 2, 2082-2088.  doi: 10.1039/C3TC32244K

    41. [41]

      Wan, H.; Gu, P.; Zhou, F.; Wang, H.; Jiang, J.; Chen, D.; Xu, Q.; Lu, J. Polyacrylic esters with a " one-is-enough” effect and investigation of their AIEE behaviours and cyanide detection in aqueous solution. Polym. Chem. 2018, 9, 3893-3899.  doi: 10.1039/C8PY00705E

    42. [42]

      Qiao, F.; Zhang, L.; Lian, Z.; Yuan, Z.; Yan, C.; Zhuo, S.; Zhou, Z.; Xing, L. Construction of artificial light-harvesting systems in aqueous solution: Supramolecular polymers based on host-enhanced pi-pi interaction with aggregation-induced emission. J. Photoch. Photbio. A 2018, 355, 419-424.  doi: 10.1016/j.jphotochem.2017.07.024

    43. [43]

      Gu, P. Y.; Lu, C. J.; Hu, Z. J.; Li, N. J.; Zhao, T. t.; Xu, Q. F.; Xu, Q. H.; Zhang, J. D.; Lu, J. M. The AIEE effect and two-photon absorption (TPA) enhancement induced by polymerization: synthesis of a monomer with ICT and AIE effects and its homopolymer by ATRP and a study of their photophysical properties. J. Mater. Chem. C. 2013, 1, 2599-2606.  doi: 10.1039/c3tc00738c

    44. [44]

      Tang, L.; Jin, J. K.; Qin, A.; Zhang Y, W.; Mao, Y.; Mei, J.; Sun, Z. J.; Zhong, T. B. A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water. Chem. Commun. 2009, 4974-6.  doi: 10.1039/b907382e

    45. [45]

      Shen, X.; Shi, Y.; Peng, B.; Li, K.; Xiang, J.; Zhang, G.; Liu, Z.; Chen, Y.; Zhang, D. Fluorescent polymeric micelles with tetraphenylethylene moieties and their application for the selective detection of glucose. Macromol. Biosci. 2012, 12, 1583-90.  doi: 10.1002/mabi.v12.11

    46. [46]

      Qin, A.; Zhang, Y.; Han, N.; Mei, J.; Sun, J.; Fan, W.; Tang, B. Z. Preparation and self-assembly of amphiphilic polymer with aggregation-induced emission characteristics. Sci. China. Chem. 2012, 55, 772-778.  doi: 10.1007/s11426-012-4528-7

    47. [47]

      Huo, M.; Ye, Q.; Che, H.; Wang, X.; Wei, Y.; Yuan, J. Polymer assemblies with nanostructure-correlated aggregation-induced emission. Macromolecules 2017, 50, 1126-1133.  doi: 10.1021/acs.macromol.6b02499

    48. [48]

      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.  doi: 10.1002/(ISSN)1521-3773

    49. [49]

      Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise huisgen cycloaddition process: Copper(i)-catalyzed regioselctive "ligation" of azides and terminal alkynes. Angew. Chem. 2002, 114, 2708-2711.  doi: 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0

    50. [50]

      Lai, C. T.; Hong, J. L. Influence of molecular weight on the aggregation-induced emission enhancement and spectral stability of vinyl polymers containing the fluorescent 2,4,6-triphenylpyridine pendant groups. J. Mater. Chem. 2012, 22, 9546-9555.  doi: 10.1039/c2jm30455d

    51. [51]

      Qin, A.; Lam, J. W. Y.; Tang, L.; Jim, C. K. W.; Zhao, H.; Sun, J.; Tang, B. Z. Polytriazoles with aggregation-induced emission characteristics: Synthesis by click polymerization and application as explosive chemosensors. Macromolecules 2009, 42, 1421-1424.  doi: 10.1021/ma8024706

    52. [52]

      Wu, Y. W.; Qin, A. J.; Tang, B. Z. AIE-active polymers for explosive detection. Chinese J. Polym. Sci. 2017, 35, 141-154.  doi: 10.1007/s10118-017-1882-0

    53. [53]

      Wu, B.; Wang, W.; Wang, J.; Li, S.; He, Y. Redox triggered aggregation induced emission (AIE) polymers with azobenzene pendants. Dyes Pigments 2018, 157, 290-297.  doi: 10.1016/j.dyepig.2018.04.066

    54. [54]

      Liu, Q.; Xia, Q.; Wang, S.; Li, B. S.; Tang, B. Z. In situ visualizable self-assembly, aggregation-induced emission and circularly polarized luminescence of tetraphenylethene and alanine-based chiral polytriazole. J. Mater. Chem. C 2018, 6, 4807-4816.  doi: 10.1039/C8TC00838H

    55. [55]

      Chen, M.; Li, L.; Wu, H.; Pan, L.; Li, S.; He, B.; Zhang, H.; Sun, J. Z.; Qin, A.; Tang, B. Z. Unveiling the different emission behavior of polytriazoles constructed from pyrazine-based aie monomers by click polymerization. ACS. Appl. Mater. Interface. 2018, 10, 12181-12188.  doi: 10.1021/acsami.8b03178

    56. [56]

      Shi, J.; Wu, Y.; Sun, S.; Tong, B.; Zhi, J.; Dong, Y. Tunable fluorescence conjugated copolymers consisting of tetraphenylethylene and fluorene units: From aggregation-induced emission enhancement to dual-channel fluorescence response. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 229-240.  doi: 10.1002/pola.26377

    57. [57]

      Liu, Z. T.; Hu, S. J.; Zhang, L. H.; Chen, J. W.; Peng, J. B.; Cao, Y. Electroluminescence performances of 1,1-bis(4-(N,N-dimethylamino)phenyl)-2,3,4,5-tetraphenylsilole based polymers in three cathode architectures. Sci. China. Chem. 2013, 56, 1129-1136.

    58. [58]

      Leung, M. k.; Lin, Y. S.; Lee, C. C.; Chang, C. C.; Wang, Y. X.; Kuo, C. P.; Singh, N.; Lin, K. R.; Hu, C. W.; Tseng, C. Y.; Ho, K. C. Benzenetricarboxamide-cored triphenylamine dendrimer: nanoparticle film formation by an electrochemical method. RSC Adv. 2013, 3, 22219-22228.  doi: 10.1039/c3ra42469c

    59. [59]

      Xu, B.; Zhang, J.; Fang, H.; Ma, S.; Chen, Q.; Sun, H.; Im, C.; Tian, W. Aggregation induced enhanced emission of conjugated dendrimers with a large intrinsic two-photon absorption cross-section. Polym. Chem. 2014, 5, 479-488.  doi: 10.1039/C3PY00974B

    60. [60]

      Zhao, Z.; Liu, J.; Yip Lam, J. W.; Chan, C. Y. K.; Qiu, H.; Tang, B. Z. Luminescent aggregates of a starburst silole-triphenylamine adduct for sensitive explosive detection. Dyes Pigments 2011, 91, 258-263.  doi: 10.1016/j.dyepig.2011.03.006

    61. [61]

      Rananaware, A.; Duc La, D.; Bhosale, S. V. Aggregation-induced emission of a star-shape luminogen based on cyclohexanehexone substituted with AIE active tetraphenylethene functionality. RSC Adv. 2015, 5, 56270-56273.  doi: 10.1039/C5RA10413K

    62. [62]

      Wang, Y.; Liu, W.; Qu, Z.; Tan, H.; Liu, Y.; Xie, G.; Zhu, W. Spirotriphenylamine based star-shaped D-A molecules meeting AIE chromophore for both efficient solution-processed doped and nondoped blue organic light-emitting diodes. Dyes Pigments 2017, 143, 173-182.  doi: 10.1016/j.dyepig.2017.04.030

    63. [63]

      Xu, D.; Liu, X.; Lu, R.; Xue, P.; Zhang, X.; Zhou, H.; Jia, J. New dendritic gelator bearing carbazole in each branching unit: selected response to fluoride ion in gel phase. Org. Biomol. Chem. 2011, 9, 1523-8.  doi: 10.1039/c0ob00786b

    64. [64]

      Wu, W.; Ye, S.; Huang, L.; Xiao, L.; Fu, Y.; Huang, Q.; Yu, G.; Liu, Y.; Qin, J.; Li, Q.; Li, Z. A conjugated hyperbranched polymer constructed from carbazole and tetraphenylethylene moieties: convenient synthesis through one-pot " A2 + B4” Suzuki polymerization, aggregation-induced enhanced emission, and application as explosive chemosensors and PLEDs. J. Mater. Chem. 2012, 22, 6374-6382.  doi: 10.1039/c2jm16514g

    65. [65]

      Zhang, J.; Zhu, J.; Lu, C.; Gu, Z.; He, T.; Yang, A.; Qiu, H.; Zhang, M.; Yin, S. A hyperbranched fluorescent supramolecular polymer with aggregation induced emission (AIE) properties. Polym. Chem. 2016, 4317-4321.  doi: 10.1039/c6py00872k

    66. [66]

      Xu, Y.; Chen, L.; Guo, Z.; Nagai, A.; Jiang, D. Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence. J. Am. Chem. Soc. 2011, 133, 17622-17625.  doi: 10.1021/ja208284t

    67. [67]

      Lee, D. H.; Ko, K. C.; Ko, J. H.; Kang, S. Y.; Lee, S. M.; Kim, H. J.; Ko, Y. J.; Lee, J. Y.; Son, S. U. In situ water-compatible polymer entrapment: A strategy for transferring superhydrophobic microporous organic polymers to water. ACS Macro Lett. 2018, 7, 651-655.  doi: 10.1021/acsmacrolett.8b00263

    68. [68]

      Kwok, R. T.; Leung, C. W.; Lam, J. W.; Tang, B. Z. Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 2015, 44, 4228-38.  doi: 10.1039/C4CS00325J

    69. [69]

      Shan, Y.; Yao, W.; Liang, Z.; Zhu, L.; Yang, S.; Ruan, Z. Reaction-based AIEE-active conjugated polymer as fluorescent turn on probe for mercury ions with good sensing performance. Dyes Pigments 2018, 156, 1-7.  doi: 10.1016/j.dyepig.2018.03.060

    70. [70]

      Wei, G.; Jiang, Y.; Wang, F. A novel AIEE polymer sensor for detection of Hg2+ and Ag+ in aqueous solution. J. Photoch. Photobio. A. 2018, 358, 38-43.  doi: 10.1016/j.jphotochem.2018.03.006

    71. [71]

      Wang, L.; Yang, L.; Cao, D. The synthesis and highly sensitive detection of water content in THF using a novel solvatochromic AIE polymer containing diketopyrrolopyrrole and triphenylamine. New J. Chem. 2016, 40, 6706-6713.  doi: 10.1039/C6NJ00192K

    72. [72]

      Yuan, W.; Gu, P. Y.; Lu, C. J.; Zhang, K. Q.; Xu, Q. F.; Lu, J. M. Switchable fluorescent AIE-active nanoporous fibers for cyclic oil adsorption. RSC. Adv. 2014, 4, 17255-17261.  doi: 10.1039/C4RA01865F

    73. [73]

      Yin, X.; Meng, F.; Wang, L. Thermosensitivity and luminescent properties of new tetraphenylethylene derivatives bearing peripheral oligo(ethylene glycol) chains . J. Mater. Chem. C 2013, 1, 6767.  doi: 10.1039/c3tc31482k

    74. [74]

      Lai, C.; Chien, R.; Kuo, S.; Hong, J. Tetraphenylthiophene-functionalized poly(N-isopropylacrylamide): probing LCST with aggregation-induced emission. Macromolecules 2011, 6546-6556.

    75. [75]

      Zhang, Z.; Hadjichristidis, N. Temperature and pH-dual responsive AIE-active core crosslinked polyethylene-poly(methacrylic acid) multimiktoarm star copolymers. ACS Macro Letters. 2018, 7, 886-891.  doi: 10.1021/acsmacrolett.8b00329

    76. [76]

      Zhang, C.; Ou, B.; Jiang, S.; Yin, G.; Chen, L.; Xu, L.; Li, X.; Yang, H. Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polym. Chem. 2018, 9, 2021-2030.  doi: 10.1039/C8PY00226F

    77. [77]

      Wei, Q.; Potzsch, R.; Liu, X.; Komber, H.; Kiriy, A.; Voit, B.; Will, P.-A.; Lenk, S.; Reineke, S. Hyperbranched polymers with high transparency and inherent high refractive index for application in organic light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2545-2553.  doi: 10.1002/adfm.v26.15

    78. [78]

      Liu, B.; Nie, H.; Zhou, X.; Hu, S.; Luo, D.; Gao, D.; Zou, J.; Xu, M.; Wang, L.; Zhao, Z.; Qin, A.; Peng, J.; Ning, H.; Cao, Y.; Tang, B. Z. Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: A novel concept to achieve high-performance hybrid white organic light-emitting diodes. Adv. Funct. Mater. 2016, 26, 776-783.  doi: 10.1002/adfm.201503368

    79. [79]

      Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. J. Mater. Chem. 2012, 22, 23726.  doi: 10.1039/c2jm31949g

  • 加载中
    1. [1]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    2. [2]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    3. [3]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    4. [4]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    5. [5]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    6. [6]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    7. [7]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    8. [8]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    9. [9]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    10. [10]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    16. [16]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    17. [17]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    18. [18]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    19. [19]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(0)
  • Abstract views(966)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return