Citation: Bo Jiang, Chang-Wei Zhang, Xue-Liang Shi, Hai-Bo Yang. AIE-active Metal-organic Coordination Complexes Based on Tetraphenylethylene Unit and Their Applications[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 372-382. doi: 10.1007/s10118-019-2216-1 shu

AIE-active Metal-organic Coordination Complexes Based on Tetraphenylethylene Unit and Their Applications

  • Corresponding author: Xue-Liang Shi, xlshi@chem.ecnu.edu.cn Hai-Bo Yang, hbyang@chem.ecnu.edu.cn
  • Received Date: 20 November 2018
    Revised Date: 24 December 2018
    Accepted Date: 1 January 2018
    Available Online: 15 January 2019

  • Tetraphenylethylene (TPE) and its derivatives, as the widely used aggregation-induced emission (AIE) fluorophores, have attracted rapidly growing interest in the fields of material science and biological technology due to their unique light-emitting mechanism—they are nearly non-emissive in dilute solution but emit brilliant fluorescence in the aggregate state because of the restriction of intramolecular motion. Coordination-driven self-assembly, which provides a highly effective method to put the individual chromophores together, is consistent with the AIE mechanism of TPE. During the past few years, some AIE-active metal-organic coordination complexes have been successfully constructed via coordination-driven self-assembly, and their AIE properties and applications have been investigated. In this review, we survey the recent progress on TPE-based metal-organic coordination complexes and their applications in fluorescence sensors, cell imaging, and light-emitting materials. We will introduce them from three different types of structures: metallacycles, metallacages, and metal-organic frameworks (MOFs).
  • 加载中
    1. [1]

      Datta, S.; Saha, M. L.; Stang, P. J. Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 2018, 51(9), 2047-2063.  doi: 10.1021/acs.accounts.8b00233

    2. [2]

      Cook, T. R.; Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 2015, 115(15), 7001-7045.  doi: 10.1021/cr5005666

    3. [3]

      Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113(1), 734-777.  doi: 10.1021/cr3002824

    4. [4]

      Chen, L. J.; Yang, H. B. Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc. Chem. Res. 2018, DOI: 10.1021/acs.accounts.8b00317.  doi: 10.1021/acs.accounts.8b00317

    5. [5]

      Chen, L. J.; Yang, H. B.; Shionoya, M. Chiral metallosupramolecular architectures. Chem. Soc. Rev. 2017, 46(9), 2555-2576.  doi: 10.1039/C7CS00173H

    6. [6]

      Wang, W.; Wang, Y. X.; Yang, H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45(9), 2656-2693.  doi: 10.1039/C5CS00301F

    7. [7]

      Xu, L.; Wang, Y. X.; Chen, L. J.; Yang, H. B. Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: from structure to functions. Chem. Soc. Rev. 2015, 44(8), 2148-2167.  doi: 10.1039/C5CS00022J

    8. [8]

      Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 2005, 38(4), 369-378.  doi: 10.1021/ar040153h

    9. [9]

      Caulder, D. L.; Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 1999, 32(11), 975-982.  doi: 10.1021/ar970224v

    10. [10]

      Oliveri, C. G.; Ulmann, P. A.; Wiester, M. J.; Mirkin, C. A. Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction. Acc. Chem. Res. 2008, 41(12), 1618-1629.  doi: 10.1021/ar800025w

    11. [11]

      Eryazici, I.; Moorefield, C. N.; Newkome, G. R. Square-planar Pd(II), Pt(II), and Au(III) terpyridine complexes: their syntheses, physical properties, supramolecular constructs, and biomedical activities. Chem. Rev. 2008, 108(6), 1834-1895.  doi: 10.1021/cr0781059

    12. [12]

      Nitschke, J. R. Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly. Acc. Chem. Res. 2007, 40(2), 103-112.  doi: 10.1021/ar068185n

    13. [13]

      Han, Y. F.; Jin, G. X. Half-sandwich iridium- and rhodiumbased organometallic architectures: rational design, synthesis, characterization, and applications. Acc. Chem. Res. 2014, 47(12), 3571-3579.  doi: 10.1021/ar500335a

    14. [14]

      Clever, G. H.; Punt, P. Cation-anion arrangement patterns in self-assembled Pd2L4 and Pd4L8 coordination cages. Acc. Chem. Res. 2017, 50(9), 2233-2243.  doi: 10.1021/acs.accounts.7b00231

    15. [15]

      Mukherjee, S.; Mukherjee, P. S. Versatility of azide in serendipitous assembly of copper(II) magnetic polyclusters. Acc. Chem. Res. 2013, 46(11), 2556-2566.  doi: 10.1021/ar400059q

    16. [16]

      Yan, X.; Li, S.; Cook, T. R.; Ji, X.; Yao, Y.; Pollock, J. B.; Shi, Y.; Yu, G.; Li, J.; Huang, F.; Stang, P. J. Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(II) metallacycles. J. Am. Chem. Soc. 2013, 135(38), 14036-14039.  doi: 10.1021/ja406877b

    17. [17]

      Pollock, J. B.; Schneider, G. L.; Cook, T. R.; Davies, A. S.; Stang, P. J. Tunable visible light emission of self-assembled rhomboidal metallacycles. J. Am. Chem. Soc. 2013, 135(37), 13676-13679.  doi: 10.1021/ja4079607

    18. [18]

      Yan, X.; Cook, T. R.; Pollock, J. B.; Wei, P.; Zhang, Y.; Yu, Y.; Huang, F.; Stang, P. J. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions. J. Am. Chem. Soc. 2014, 136(12), 4460-4463.  doi: 10.1021/ja412249k

    19. [19]

      Neti, V. S. P. K.; Saha, M. L.; Yan, X.; Zhou, Z.; Stang, P. J. Coordination-driven self-assembly of fullerene-functionalized Pt(ll) metallacycles. Organometallics 2015, 34(20), 4813-4815.  doi: 10.1021/acs.organomet.5b00718

    20. [20]

      Chen, L. J.; Zhao, G. Z.; Jiang, B.; Sun, B.; Wang, M.; Xu, L.; He, J.; Abliz, Z.; Tan, H.; Li, X.; Yang, H. B. Smart stimuli-responsive spherical nanostructures constructed from supramolecular metallodendrimers via hierarchical self-assembly. J. Am. Chem. Soc. 2014, 136(16), 5993-6001.  doi: 10.1021/ja500152a

    21. [21]

      Chen, L. J.; Jiang, B.; Yang, H. B. Transformable nanostructures of cholesteryl-containing rhomboidal metallacycles through hierarchical self-assembly. Org. Chem. Front. 2016, 3(5), 579-587.  doi: 10.1039/C6QO00017G

    22. [22]

      Li, Z. Y.; Zhang, Y.; Zhang, C. W.; Chen, L. J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H. B. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 2014, 136(24), 8577-8589.  doi: 10.1021/ja413047r

    23. [23]

      Jiang, B.; Zhang, J.; Ma, J.; Zheng, W.; Chen, L. J.; Sun, B.; Li, C.; Hu, B.; Tan, H.; Li, X.; Yang, H. B. Vapochromic behavior of a chair-shaped supramolecular metallacycle with ultra-stability. J. Am. Chem. Soc. 2016, 138(3), 738-741.  doi: 10.1021/jacs.5b11409

    24. [24]

      Jiang, B.; Chen, L. J.; Zhang, Y.; Tan, H.; Xu, L.; Yang, H. B. Hierarchical self-assembly of triangular metallodendrimers into the ordered nanostructures. Chin. Chem. Lett. 2016, 27(4), 607-612.  doi: 10.1016/j.cclet.2016.03.017

    25. [25]

      Jiang, B.; Zhang, J.; Zheng, W.; Chen, L. J.; Yin, G. Q.; Wang, Y. X.; Sun, B.; Li, X.; Yang, H. B. Construction of alkynylplatinum(II) bzimpy-functionalized metallacycles and their hierarchical self-assembly behavior in solution promoted by Pt···Pt and π-π interactions. Chem. - Eur. J. 2016, 22(41), 14664-14671.  doi: 10.1002/chem.201601682

    26. [26]

      Zhang, Y.; Zhou, Q. F.; Huo, G.; Yin, G. Q.; Zhao, X.; Jiang, B.; Tan, H.; Li, X.; Yang, H. B. Hierarchical self-assembly of an alkynylplatinum(ll) bzimpy-functionalized metallacage via Pt···Pt and π-π Interactions. Inorg. Chem. 2018, 57(7), 3516-3520.  doi: 10.1021/acs.inorgchem.7b02777

    27. [27]

      Zhang, J.; Marega, R.; Chen, L. J.; Wu, N. W.; Xu, X. D.; Muddiman, D. C.; Bonifazi, D.; Yang, H. B. Hierarchical self-assembly of supramolecular hydrophobic metallacycles into ordered nanostructures. Chem. - Asian J. 2014, 9(10), 2928-2936.  doi: 10.1002/asia.201402410

    28. [28]

      Wu, N. W.; Chen, L. J.; Wang, C.; Ren, Y. Y.; Li, X.; Xu, L.; Yang, H. B. Hierarchical self-assembly of a discrete hexagonal metallacycle into the ordered nanofibers and stimuli-responsive supramolecular gels. Chem. Commun. 2014, 50(32), 4231-4233.  doi: 10.1039/c3cc49054h

    29. [29]

      Wang, W.; Zhang, Y.; Sun, B.; Chen, L. J.; Xu, X. D.; Wang, M.; Li, X.; Yu, Y.; Jiang, W.; Yang, H. B. The construction of complex multicomponent supramolecular systems via the combination of orthogonal self-assembly and the self-sorting approach. Chem. Sci. 2014, 5(12), 4554-4560.  doi: 10.1039/C4SC01550A

    30. [30]

      Zhao, G. Z.; Chen, L. J.; Wang, W.; Zhang, J.; Yang, G.; Wang, D. X.; Yu, Y.; Yang, H. B. Stimuli-responsive supramolecular gels through hierarchical self-assembly of discrete rhomboidal metallacycles. Chem.- Eur. J. 2013, 19(31), 10094-10100.  doi: 10.1002/chem.201301385

    31. [31]

      Wang, X. Q.; Wang, W.; Yin, G. Q.; Wang, Y. X.; Zhang, C. W.; Shi, J.; Yu, Y.; Yang, H. B. Cross-linked supramolecular polymer metallogels constructed via a self-sorting strategy and their multiple stimulus-response behaviors. Chem. Commun. 2015, 51(94), 16813-16816.  doi: 10.1039/C5CC05625J

    32. [32]

      McConnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke, J. R. Stimuli-responsive metal-ligand assemblies. Chem. Rev. 2015, 115(15), 7729-7793.  doi: 10.1021/cr500632f

    33. [33]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 0(18), 1740-1741.

    34. [34]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar. Chem. Rev. 2015, 115(21), 11718-11940.  doi: 10.1021/acs.chemrev.5b00263

    35. [35]

      Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes Based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441-2453.  doi: 10.1021/ar3003464

    36. [36]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induce emission. Chem. Soc. Rev. 2011, 40(11), 5361-5388.  doi: 10.1039/c1cs15113d

    37. [37]

      Feng, G.; Liu, B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc. Chem. Res. 2018, 51(6), 1404-1414.  doi: 10.1021/acs.accounts.8b00060

    38. [38]

      Liu, Y.; Deng, C.; Tang, L.; Qin, A.; Hu, R.; Sun, J. Z.; Tang, B. Z. Specific detection of D-glucose by a tetraphenylethene-based fluorescent sensor. J. Am. Chem. Soc. 2011, 133(4), 660-663.  doi: 10.1021/ja107086y

    39. [39]

      Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z. Click synthesis, aggregation-induced emission, E/Z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J. Am. Chem. Soc., 2012, 134(24), 9956-9966.  doi: 10.1021/ja208883h

    40. [40]

      Xu, S.; Yuan, Y.; Cai, X.; Zhang, C. J.; Hu, F.; Liang, J.; Zhang, G.; Zhang, D.; Liu, B. Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics. Chem. Sci. 2015, 6(10), 5824-5830.  doi: 10.1039/C5SC01733E

    41. [41]

      Zhang, C. W.; Ou, B.; Jiang, S. T.; Yin, G. Q.; Chen, L. J.; Xu, L.; Li, X.; Yang, H. B. Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polym. Chem. 2018, 9(15), 2021-2030.  doi: 10.1039/C8PY00226F

    42. [42]

      Zhang, C. W.; Jiang, S. T.; Yin, G. Q.; Li, X.; Zhao, X. L.; Yang H. B. Dual stimuli-responsive cross-linker AIE supramolecular polymer constructed through hierarchical self-assembly. Isr. J. Chem. 2018, DOI: 10.1002/ijch.201800062.  doi: 10.1002/ijch.201800062

    43. [43]

      Zheng, W.; Yang, G.; Jiang, S.; Shao, N.; Yin, G. Q.; Xu, L.; Li, X.; Chen, G.; Yang, H. B. A Tetraphenylethylene (TPE)-based supra-amphiphilic organoplatinum(ll) metallacycle and its self-assembly behaviour. Mater. Chem. Front. 2017, 1(9), 1823-1828.  doi: 10.1039/C7QM00107J

    44. [44]

      Chen, L. J.; Ren, Y. Y.; Wu, N. W.; Sun, B.; Ma, J.; Zhang, L.; Tan, H.; Liu, M.; Li, X.; Yang, H. B. Hierarchical self-assembly of discrete organoplatinum(II) metallacycles with polysaccharide via electrostatic interactions and their application for heparin detection. J. Am. Chem. Soc. 2015, 137(36), 11725-11735.  doi: 10.1021/jacs.5b06565

    45. [45]

      Yin, G. Q.; Wang, H.; Wag, X. Q.; Song, B.; Chen, L. J.; Wang, L.; Hao, X. Q.; Yang, H. B.; Li, X. Self-assembly of emissive supramolecular rosettes with increasing complexity using multitopic terpyridine ligands. Nat. Commun. 2018, 9, 567.  doi: 10.1038/s41467-018-02959-w

    46. [46]

      Zhang, M.; Li, S.; Yan, X.; Zhou, Z.; Saha, M. L.; Wang, Y. C.; Stang, P. J. Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for cell imaging. Proc. Natl. Acad. Sci. U.S.A. 2016, 113(40), 11100-11105.  doi: 10.1073/pnas.1612898113

    47. [47]

      Yan, X.; Wang, H.; Hauke, C. E.; Cook, T. R.; Wang, M.; Saha, M. L.; Zhou, Z.; Zhang, M.; Li, X.; Huang, F.; Stang, P. J. A suite of tetraphenylethylene-based discrete organoplatinum(II) metallacycles: controllable structure and stoichiometry, aggregation-induced emission, and nitroaromatics sensing. J. Am. Chem. Soc. 2015, 137(48), 15276-15286.  doi: 10.1021/jacs.5b10130

    48. [48]

      Yan, X.; Wang, W.; Cook, T. R.; Zhang, M.; Saha, M. L.; Zhou, Z.; Li, X.; Huang, F.; Stang, P. J. Light-emitting superstructures with anion effect: coordination-driven self-assembly of pure tetraphenylethylene metallacycles and metallacages. J. Am. Chem. Soc. 2016, 138(13), 4580-4588.  doi: 10.1021/jacs.6b00846

    49. [49]

      Zhou, Z.; Yan, X.; Saha, M. L.; Zhang, M.; Wang, M.; Li, X.; Stang, P. J. Immobilizing tetraphenylethylene into fused metallacycles: shape effects on fluorescence emission. J. Am. Chem. Soc. 2016, 138(40), 13131-13134.  doi: 10.1021/jacs.6b07173

    50. [50]

      Tian, Y.; Yan, X.; Saha, M. L.; Niu, Z.; Stang, P. J. Hierarchical self-assembly of responsive organoplatinum(ll) metallacycle-TMV complexes with turn-on fluorescence. J. Am. Chem. Soc. 2016, 138(37), 12033-12036.  doi: 10.1021/jacs.6b07402

    51. [51]

      Yu, G.; Zhang, M.; Saha, M. L.; Mao, Z.; Chen, J.; Yao, Y.; Zhou, Z.; Liu, Y.; Gao, C.; Huang, F.; Chen, X.; Stang, P. J. Antitumor activity of a unique polymer that incorporates a fluorescent self-assembled metallacycle. J. Am. Chem. Soc. 2017, 139(44), 15940-15949.  doi: 10.1021/jacs.7b09224

    52. [52]

      Yan, X.; Cook, T. R.; Wang, P.; Huang, F.; Stang, P. J. Highly emissive platinum(ll) metallacages. Nat. Chem. 2015, 7, 342-348.  doi: 10.1038/nchem.2201

    53. [53]

      Zhang, M.; Saha, M. L.; Wang, M.; Zhou, Z.; Song, B.; Lu, C.; Yan, X.; Li, X.; Huang, F.; Yin, S.; Stang, P. J. Multicomponent platinum(ll) cages with tunable emission and amino acid sensing. J. Am. Chem. Soc. 2017, 139(14), 5067-5074.  doi: 10.1021/jacs.6b12536

    54. [54]

      Lu, C.; Zhang, M.; Tang, D.; Yan, X.; Zhang, Z.; Zhou, Z.; Song, B.; Wang, H.; Li, X.; Yin, S.; Sepehrpour, H.; Stang, P. J. Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host-guest interactions. J. Am. Chem. Soc. 2018, 140(24), 7674-7680.  doi: 10.1021/jacs.8b03781

    55. [55]

      Sun, Y.; Yao, Y.; Wang, H.; Fu, W.; Chen, C.; Saha, M. L.; Zhang, M.; Datta, S.; Zhou, Z.; Yu, H.; Li, X.; Stang, P. J. Self-assembly of metallacages into multidimensional suprastructures with tunable emissions. J. Am. Chem. Soc. 2018, 140(40), 12819-12828.  doi: 10.1021/jacs.8b05809

    56. [56]

      Yu, G.; Cook, T. R.; Li, Y.; Yan, X.; Wu, D.; Shao, L.; Shen, J.; Tang, G.; Huang, F.; Chen, X.; Stang, P. J. Tetraphenylethene-based highly emissive metallacage as a component of theranostic supramolecular nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2016, 113(48), 13720-13725.  doi: 10.1073/pnas.1616836113

    57. [57]

      Shustova, N. B.; McCarthy, B. D.; Dincǎ, M. Turn-on in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011, 133(50), 20126-20129.  doi: 10.1021/ja209327q

    58. [58]

      Shustova, N. B.; Cozzoline, A. F.; Reineke, S.; Baldo, M.; Dincǎ, M. Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites. J. Am. Chem. Soc. 2013, 135(36), 13326-13329.  doi: 10.1021/ja407778a

    59. [59]

      Shustova, N.; Cozzolino, A. F.; Dincǎ, M. Conformational locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks. J. Am. Chem. Soc. 2012, 134(48), 19596-19599.  doi: 10.1021/ja3103154

    60. [60]

      Shustova, N. B.; Ong, T.; Cozzolino, A. F.; Michaelis, V. K.; Griffin, R. G.; Dincǎ, M. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation induced emission. J. Am. Chem. Soc. 2012, 134(36), 15061-15070.  doi: 10.1021/ja306042w

    61. [61]

      Zhang, Q.; Su, J.; Feng, D.; Wei, Z.; Zou, X.; Zhou, H. C. Piezofluorochromic metal-organic framework: a microscissor lift. J. Am. Chem. Soc. 2015, 137(32), 10064-10067.  doi: 10.1021/jacs.5b04695

    62. [62]

      Wei, Z.; Gu, Z. Y.; Arvapallu, R. K.; Chen, Y. P.; McDougald, Jr. R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D.; Omary, M. A.; Zhou, H. C. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136(23), 8269-8276.  doi: 10.1021/ja5006866

    63. [63]

      Zhang, M.; Feng, G.; Song, Z.; Zhou, Y. P.; Chao, H. Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136(20), 7241-7244.  doi: 10.1021/ja502643p

    64. [64]

      Hu, Z.; Lustig, W. P.; Zhang, J.; Zheng, C.;Wang, H.; Teat, S. J.; Gong, Q.; Rudd, N. D.; Li, J. Effective detection of mycotoxins by a highly luminescent metal-organic framework. J. Am. Chem. Soc. 2015, 137(51), 16209-16215.  doi: 10.1021/jacs.5b10308

  • 加载中
    1. [1]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    2. [2]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    3. [3]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    4. [4]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    5. [5]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    6. [6]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    7. [7]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    8. [8]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    9. [9]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    10. [10]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    11. [11]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    12. [12]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    13. [13]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    14. [14]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    15. [15]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    16. [16]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    17. [17]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    18. [18]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    19. [19]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    20. [20]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

Metrics
  • PDF Downloads(0)
  • Abstract views(792)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return